परिमितवाद: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Philosophy of mathematics that accepts the existence only of finite mathematical objects}} | {{Short description|Philosophy of mathematics that accepts the existence only of finite mathematical objects}} | ||
फ़िनिटिज़्म गणित का एक दर्शन है जो | फ़िनिटिज़्म गणित का एक दर्शन है जो मात्र परिमित [[गणितीय वस्तु]]ओं के अस्तित्व को स्वीकार करता है। इसे गणित के मुख्यधारा दर्शन की तुलना में सबसे अच्छे प्रकार से समझा जाता है जहां अनंत गणितीय वस्तुओं (उदाहरण के लिए, [[अनंत सेट|अनंत समुच्चय]]) को वैध माना जाता है। | ||
== मुख्य विचार == | == मुख्य विचार == | ||
परिमित गणित का मुख्य विचार अनंत वस्तुओं जैसे अनंत समुच्चयों के अस्तित्व को स्वीकार नहीं करना है। जबकि सभी [[प्राकृतिक संख्या]]ओं को विद्यमान माना जाता है, सभी प्राकृतिक संख्याओं के समुच्चय को गणितीय वस्तु के रूप में अस्तित्व में नहीं माना जाता है। इसलिए अनंत डोमेन पर [[परिमाणक (तर्क)]] को सार्थक नहीं माना जाता है। गणितीय सिद्धांत अधिकांशतः फ़िनिटिज्म से जुड़ा होता है, जो [[थोरल्फ़ स्कोलेम]] का [[आदिम पुनरावर्ती अंकगणित]] है। | परिमित गणित का मुख्य विचार अनंत वस्तुओं जैसे अनंत समुच्चयों के अस्तित्व को स्वीकार नहीं करना है। जबकि सभी [[प्राकृतिक संख्या]]ओं को विद्यमान माना जाता है, सभी प्राकृतिक संख्याओं के समुच्चय को गणितीय वस्तु के रूप में अस्तित्व में नहीं माना जाता है। इसलिए अनंत डोमेन पर [[परिमाणक (तर्क)]] को सार्थक नहीं माना जाता है। इस प्रकार गणितीय सिद्धांत अधिकांशतः फ़िनिटिज्म से जुड़ा होता है, जो [[थोरल्फ़ स्कोलेम]] का [[आदिम पुनरावर्ती अंकगणित]] है। | ||
== इतिहास == | == इतिहास == | ||
अनंत गणितीय वस्तुओं का परिचय कुछ शताब्दियों पहले हुआ था जब अनंत वस्तुओं का उपयोग गणितज्ञों के बीच पहले से ही एक विवादास्पद का विषय था। यह समस्या एक नवीनतम चरण में प्रवेश कर गया था जब 1874 में [[जॉर्ज कैंटर]] ने जिसे अब नैवे समुच्चय सिद्धांत कहा जाता है उसे प्रस्तुत किया गया और इसे [[अनंत संख्या]] पर अपने कार्य के लिए आधार के रूप में उपयोग किया था। जब कैंटर के अनुभवहीन समुच्चय सिद्धांत में रसेल के विरोधाभास, बेरी के विरोधाभास और [[बुराली-फोर्टी विरोधाभास]] जैसे विरोधाभासों की खोज की गई, तो यह समस्या गणितज्ञों के बीच एक गर्म विषय बन गया था। | अनंत गणितीय वस्तुओं का परिचय कुछ शताब्दियों पहले हुआ था जब अनंत वस्तुओं का उपयोग गणितज्ञों के बीच पहले से ही एक विवादास्पद का विषय था। यह समस्या एक नवीनतम चरण में प्रवेश कर गया था जब 1874 में [[जॉर्ज कैंटर]] ने जिसे अब नैवे समुच्चय सिद्धांत कहा जाता है उसे प्रस्तुत किया गया और इसे [[अनंत संख्या]] पर अपने कार्य के लिए आधार के रूप में उपयोग किया था। इस प्रकार जब कैंटर के अनुभवहीन समुच्चय सिद्धांत में रसेल के विरोधाभास, बेरी के विरोधाभास और [[बुराली-फोर्टी विरोधाभास]] जैसे विरोधाभासों की खोज की गई, तो यह समस्या गणितज्ञों के बीच एक गर्म विषय बन गया था। | ||
गणितज्ञों द्वारा विभिन्न पद अपनाये गये है। प्राकृतिक संख्याओं जैसी परिमित गणितीय वस्तुओं के बारे में सभी सहमत थे। चूंकि अनंत गणितीय वस्तुओं के संबंध में असहमति थी। एक स्थिति [[अंतर्ज्ञानवादी गणित]] की थी जिसकी वकालत एल. ई. जे. ब्रौवर ने की थी, जिसने अनंत वस्तुओं के अस्तित्व को तब तक खारिज कर दिया था, जब तक कि उनका निर्माण नहीं हो जाता था। | गणितज्ञों द्वारा विभिन्न पद अपनाये गये है। प्राकृतिक संख्याओं जैसी परिमित गणितीय वस्तुओं के बारे में सभी सहमत थे। चूंकि अनंत गणितीय वस्तुओं के संबंध में असहमति थी। एक स्थिति [[अंतर्ज्ञानवादी गणित]] की थी जिसकी वकालत एल. ई. जे. ब्रौवर ने की थी, जिसने अनंत वस्तुओं के अस्तित्व को तब तक खारिज कर दिया था, जब तक कि उनका निर्माण नहीं हो जाता था। | ||
[[डेविड हिल्बर्ट]] द्वारा एक अन्य स्थिति का समर्थन किया गया था: क्योंकि परिमित गणितीय वस्तुएं ठोस वस्तुएं हैं, अनंत गणितीय वस्तुएं आदर्श वस्तुएं हैं, और आदर्श गणितीय वस्तुओं को स्वीकार करने से परिमित गणितीय वस्तुओं के संबंध में कोई समस्या नहीं होती है। अधिक औपचारिक रूप से, हिल्बर्ट का मानना था कि यह दिखाना संभव है कि परिमित गणितीय वस्तुओं के बारे में कोई भी प्रमेय जो आदर्श अनंत वस्तुओं का उपयोग करके प्राप्त किया जा सकता है, उनके बिना भी प्राप्त किया जा सकता है। इसलिए अनंत गणितीय वस्तुओं को अनुमति देने से परिमित वस्तुओं के संबंध में कोई समस्या नहीं होती है। इसने फ़िनिटिस्टिक साधनों का उपयोग करके समुच्चय सिद्धांत की स्थिरता और [[पूर्णता (तर्क)]] दोनों को सिद्ध करने के हिल्बर्ट के कार्यक्रम को उत्पन्न किया क्योंकि इसका अर्थ यह होगा कि आदर्श गणितीय वस्तुओं को जोड़ना फ़िनिटिस्टिक भाग पर [[रूढ़िवादी विस्तार]] है। हिल्बर्ट के विचार औपचारिकतावाद (गणित) से भी जुड़े हैं। कर्ट गोडेल के [[अपूर्णता प्रमेयों]] के कारण समुच्चय सिद्धांत या यहां तक कि अंकगणित की निरंतरता और पूर्णता को अंतिम साधनों के माध्यम से सिद्ध करने का हिल्बर्ट का लक्ष्य एक असंभव कार्य बन गया था। चूंकि, [[हार्वे फ्रीडमैन]] के फ्रीडमैन के भव्य अनुमान का अर्थ यह होगा कि अधिकांश गणितीय परिणाम अंतिम साधनों का उपयोग करके सिद्ध किए जा सकते हैं। | [[डेविड हिल्बर्ट]] द्वारा एक अन्य स्थिति का समर्थन किया गया था: क्योंकि परिमित गणितीय वस्तुएं ठोस वस्तुएं हैं, अनंत गणितीय वस्तुएं आदर्श वस्तुएं हैं, और आदर्श गणितीय वस्तुओं को स्वीकार करने से परिमित गणितीय वस्तुओं के संबंध में कोई समस्या नहीं होती है। अधिक औपचारिक रूप से, हिल्बर्ट का मानना था कि यह दिखाना संभव है कि परिमित गणितीय वस्तुओं के बारे में कोई भी प्रमेय जो आदर्श अनंत वस्तुओं का उपयोग करके प्राप्त किया जा सकता है, उनके बिना भी प्राप्त किया जा सकता है। इसलिए अनंत गणितीय वस्तुओं को अनुमति देने से परिमित वस्तुओं के संबंध में कोई समस्या नहीं होती है। इसने फ़िनिटिस्टिक साधनों का उपयोग करके समुच्चय सिद्धांत की स्थिरता और [[पूर्णता (तर्क)]] दोनों को सिद्ध करने के हिल्बर्ट के कार्यक्रम को उत्पन्न किया क्योंकि इसका अर्थ यह होगा कि आदर्श गणितीय वस्तुओं को जोड़ना फ़िनिटिस्टिक भाग पर [[रूढ़िवादी विस्तार]] है। हिल्बर्ट के विचार औपचारिकतावाद (गणित) से भी जुड़े हैं। इसी प्रकार कर्ट गोडेल के [[अपूर्णता प्रमेयों]] के कारण समुच्चय सिद्धांत या यहां तक कि अंकगणित की निरंतरता और पूर्णता को अंतिम साधनों के माध्यम से सिद्ध करने का हिल्बर्ट का लक्ष्य एक असंभव कार्य बन गया था। चूंकि, [[हार्वे फ्रीडमैन]] के फ्रीडमैन के भव्य अनुमान का अर्थ यह होगा कि अधिकांश गणितीय परिणाम अंतिम साधनों का उपयोग करके सिद्ध किए जा सकते हैं। | ||
हिल्बर्ट ने जिसे वह परिमितवादी मानते थे और जिसे प्राथमिक कहा था, उसकी कोई कठोर व्याख्या नहीं की थी। चूंकि, [[पॉल बर्नेज़]] के साथ उनके कार्य के आधार पर विलियम डब्ल्यू टैट जैसे कुछ विशेषज्ञों ने तर्क दिया है कि आदिम पुनरावर्ती अंकगणित को हिल्बर्ट ने फ़िनिस्टिक गणित के रूप में माना था और उस पर एक ऊपरी सीमा को स्थापित किया था। | हिल्बर्ट ने जिसे वह परिमितवादी मानते थे और जिसे प्राथमिक कहा था, उसकी कोई कठोर व्याख्या नहीं की थी। चूंकि, [[पॉल बर्नेज़]] के साथ उनके कार्य के आधार पर विलियम डब्ल्यू टैट जैसे कुछ विशेषज्ञों ने तर्क दिया है कि आदिम पुनरावर्ती अंकगणित को हिल्बर्ट ने फ़िनिस्टिक गणित के रूप में माना था और उस पर एक ऊपरी सीमा को स्थापित किया था। | ||
Line 17: | Line 17: | ||
== मौलिक परिमितवाद बनाम सख्त परिमितवाद == | == मौलिक परिमितवाद बनाम सख्त परिमितवाद == | ||
अपनी पुस्तक द फिलॉसफी ऑफ़ सेट थ्योरी में, [[मैरी टाइल्स]] ने उन लोगों को 'मौलिक फ़िनिटिस्ट' के रूप में चित्रित किया है जो संभावित रूप से अनंत वस्तुओं को अनुमति नहीं देते हैं, | अपनी पुस्तक द फिलॉसफी ऑफ़ सेट थ्योरी में, [[मैरी टाइल्स]] ने उन लोगों को 'मौलिक फ़िनिटिस्ट' के रूप में चित्रित किया है जो संभावित रूप से अनंत वस्तुओं को अनुमति नहीं देते हैं, और जो संभावित रूप से अनंत वस्तुओं को अनुमति नहीं देते हैं उन्हें 'सख्त फ़िनिटिस्ट' के रूप में वर्णित किया गया है: उदाहरण के लिए, एक मौलिक फ़िनिटिस्ट इस प्रकार के सिद्ध की अनुमति देगा प्रत्येक प्राकृतिक संख्या का एक [[उत्तराधिकारी कार्य|सक्सेसर]] होता है और वह परिमित आंशिक योगों की [[सीमा (गणित)]] के अर्थ में अनंत श्रृंखला की सार्थकता को स्वीकार करता है, जबकि एक सख्त परिमितवादी ऐसा नहीं करता है। इसी प्रकार ऐतिहासिक रूप से, गणित का लिखित इतिहास इस प्रकार मौलिक रूप से फ़िनिटिस्ट था जब तक कि कैंटर ने 19 वीं शताब्दी के अंत में ट्रांसफ़िनिट नंबर [[ बुनियादी संख्या ]] का पदानुक्रम नहीं बना दिया था। | ||
== अनंत गणितीय वस्तुओं के संबंध में विचार == | == अनंत गणितीय वस्तुओं के संबंध में विचार == | ||
Line 41: | Line 41: | ||
[[अल्ट्राफ़िनिटिज़्म]] (जिसे अल्ट्राइंटुशनिज़्म के रूप में भी जाना जाता है) में फ़िनिटिज़्म की तुलना गणितीय वस्तुओं के प्रति और भी अधिक रूढ़िवादी रवैया है, और जब वे बहुत बड़े होते हैं तो परिमित गणितीय वस्तुओं के अस्तित्व पर आपत्ति होती है। | [[अल्ट्राफ़िनिटिज़्म]] (जिसे अल्ट्राइंटुशनिज़्म के रूप में भी जाना जाता है) में फ़िनिटिज़्म की तुलना गणितीय वस्तुओं के प्रति और भी अधिक रूढ़िवादी रवैया है, और जब वे बहुत बड़े होते हैं तो परिमित गणितीय वस्तुओं के अस्तित्व पर आपत्ति होती है। | ||
20वीं सदी के अंत में [[जॉन पेन मेबेरी]] ने वित्तीय गणित की एक प्रणाली विकसित की जिसे उन्होंने यूक्लिडियन अंकगणित कहा था। उनकी प्रणाली का सबसे महत्वपूर्ण सिद्धांत सामान्य रूप से पुनरावृत्त प्रक्रियाओं को दी जाने वाली विशेष मूलभूत स्थिति की पूर्ण और कठोर अस्वीकृति है, जिसमें विशेष रूप से पुनरावृत्त +1 द्वारा प्राकृतिक संख्याओं का निर्माण भी सम्मलित है। परिणाम स्वरुप, मेबेरी उन लोगों से तीव्र असहमत हैं जो अंतिम गणित को पीनो एक्सिओम्स अंकगणित के प्रथम-क्रम सिद्धांत या इसके किसी भी टुकड़े जैसे कि आदिम पुनरावर्ती अंकगणित के साथ समतुल्य करना चाहते हैं। | 20वीं सदी के अंत में [[जॉन पेन मेबेरी]] ने वित्तीय गणित की एक प्रणाली विकसित की जिसे उन्होंने यूक्लिडियन अंकगणित कहा था। इसी प्रकार उनकी प्रणाली का सबसे महत्वपूर्ण सिद्धांत सामान्य रूप से पुनरावृत्त प्रक्रियाओं को दी जाने वाली विशेष मूलभूत स्थिति की पूर्ण और कठोर अस्वीकृति है, जिसमें विशेष रूप से पुनरावृत्त +1 द्वारा प्राकृतिक संख्याओं का निर्माण भी सम्मलित है। परिणाम स्वरुप, मेबेरी उन लोगों से तीव्र असहमत हैं जो अंतिम गणित को पीनो एक्सिओम्स अंकगणित के प्रथम-क्रम सिद्धांत या इसके किसी भी टुकड़े जैसे कि आदिम पुनरावर्ती अंकगणित के साथ समतुल्य करना चाहते हैं। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 13:09, 9 July 2023
फ़िनिटिज़्म गणित का एक दर्शन है जो मात्र परिमित गणितीय वस्तुओं के अस्तित्व को स्वीकार करता है। इसे गणित के मुख्यधारा दर्शन की तुलना में सबसे अच्छे प्रकार से समझा जाता है जहां अनंत गणितीय वस्तुओं (उदाहरण के लिए, अनंत समुच्चय) को वैध माना जाता है।
मुख्य विचार
परिमित गणित का मुख्य विचार अनंत वस्तुओं जैसे अनंत समुच्चयों के अस्तित्व को स्वीकार नहीं करना है। जबकि सभी प्राकृतिक संख्याओं को विद्यमान माना जाता है, सभी प्राकृतिक संख्याओं के समुच्चय को गणितीय वस्तु के रूप में अस्तित्व में नहीं माना जाता है। इसलिए अनंत डोमेन पर परिमाणक (तर्क) को सार्थक नहीं माना जाता है। इस प्रकार गणितीय सिद्धांत अधिकांशतः फ़िनिटिज्म से जुड़ा होता है, जो थोरल्फ़ स्कोलेम का आदिम पुनरावर्ती अंकगणित है।
इतिहास
अनंत गणितीय वस्तुओं का परिचय कुछ शताब्दियों पहले हुआ था जब अनंत वस्तुओं का उपयोग गणितज्ञों के बीच पहले से ही एक विवादास्पद का विषय था। यह समस्या एक नवीनतम चरण में प्रवेश कर गया था जब 1874 में जॉर्ज कैंटर ने जिसे अब नैवे समुच्चय सिद्धांत कहा जाता है उसे प्रस्तुत किया गया और इसे अनंत संख्या पर अपने कार्य के लिए आधार के रूप में उपयोग किया था। इस प्रकार जब कैंटर के अनुभवहीन समुच्चय सिद्धांत में रसेल के विरोधाभास, बेरी के विरोधाभास और बुराली-फोर्टी विरोधाभास जैसे विरोधाभासों की खोज की गई, तो यह समस्या गणितज्ञों के बीच एक गर्म विषय बन गया था।
गणितज्ञों द्वारा विभिन्न पद अपनाये गये है। प्राकृतिक संख्याओं जैसी परिमित गणितीय वस्तुओं के बारे में सभी सहमत थे। चूंकि अनंत गणितीय वस्तुओं के संबंध में असहमति थी। एक स्थिति अंतर्ज्ञानवादी गणित की थी जिसकी वकालत एल. ई. जे. ब्रौवर ने की थी, जिसने अनंत वस्तुओं के अस्तित्व को तब तक खारिज कर दिया था, जब तक कि उनका निर्माण नहीं हो जाता था।
डेविड हिल्बर्ट द्वारा एक अन्य स्थिति का समर्थन किया गया था: क्योंकि परिमित गणितीय वस्तुएं ठोस वस्तुएं हैं, अनंत गणितीय वस्तुएं आदर्श वस्तुएं हैं, और आदर्श गणितीय वस्तुओं को स्वीकार करने से परिमित गणितीय वस्तुओं के संबंध में कोई समस्या नहीं होती है। अधिक औपचारिक रूप से, हिल्बर्ट का मानना था कि यह दिखाना संभव है कि परिमित गणितीय वस्तुओं के बारे में कोई भी प्रमेय जो आदर्श अनंत वस्तुओं का उपयोग करके प्राप्त किया जा सकता है, उनके बिना भी प्राप्त किया जा सकता है। इसलिए अनंत गणितीय वस्तुओं को अनुमति देने से परिमित वस्तुओं के संबंध में कोई समस्या नहीं होती है। इसने फ़िनिटिस्टिक साधनों का उपयोग करके समुच्चय सिद्धांत की स्थिरता और पूर्णता (तर्क) दोनों को सिद्ध करने के हिल्बर्ट के कार्यक्रम को उत्पन्न किया क्योंकि इसका अर्थ यह होगा कि आदर्श गणितीय वस्तुओं को जोड़ना फ़िनिटिस्टिक भाग पर रूढ़िवादी विस्तार है। हिल्बर्ट के विचार औपचारिकतावाद (गणित) से भी जुड़े हैं। इसी प्रकार कर्ट गोडेल के अपूर्णता प्रमेयों के कारण समुच्चय सिद्धांत या यहां तक कि अंकगणित की निरंतरता और पूर्णता को अंतिम साधनों के माध्यम से सिद्ध करने का हिल्बर्ट का लक्ष्य एक असंभव कार्य बन गया था। चूंकि, हार्वे फ्रीडमैन के फ्रीडमैन के भव्य अनुमान का अर्थ यह होगा कि अधिकांश गणितीय परिणाम अंतिम साधनों का उपयोग करके सिद्ध किए जा सकते हैं।
हिल्बर्ट ने जिसे वह परिमितवादी मानते थे और जिसे प्राथमिक कहा था, उसकी कोई कठोर व्याख्या नहीं की थी। चूंकि, पॉल बर्नेज़ के साथ उनके कार्य के आधार पर विलियम डब्ल्यू टैट जैसे कुछ विशेषज्ञों ने तर्क दिया है कि आदिम पुनरावर्ती अंकगणित को हिल्बर्ट ने फ़िनिस्टिक गणित के रूप में माना था और उस पर एक ऊपरी सीमा को स्थापित किया था।
गोडेल के प्रमेयों के परिणामस्वरूप, जैसा कि यह स्पष्ट हो गया कि गणित की स्थिरता और पूर्णता दोनों को सिद्ध करने की कोई अपेक्षा नहीं है, और ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत जैसे प्रतीत होता है सुसंगत स्वयंसिद्ध समुच्चय सिद्धांत के विकास के साथ, अधिकांश आधुनिक गणितज्ञ ध्यान केंद्रित नहीं करते हैं इस विषय पर आज, अधिकांश गणितज्ञों को प्लेटो माना जाता है और वे सरलता से अनंत गणितीय वस्तुओं और एक समुच्चय-सैद्धांतिक ब्रह्मांड का उपयोग करते हैं।
मौलिक परिमितवाद बनाम सख्त परिमितवाद
अपनी पुस्तक द फिलॉसफी ऑफ़ सेट थ्योरी में, मैरी टाइल्स ने उन लोगों को 'मौलिक फ़िनिटिस्ट' के रूप में चित्रित किया है जो संभावित रूप से अनंत वस्तुओं को अनुमति नहीं देते हैं, और जो संभावित रूप से अनंत वस्तुओं को अनुमति नहीं देते हैं उन्हें 'सख्त फ़िनिटिस्ट' के रूप में वर्णित किया गया है: उदाहरण के लिए, एक मौलिक फ़िनिटिस्ट इस प्रकार के सिद्ध की अनुमति देगा प्रत्येक प्राकृतिक संख्या का एक सक्सेसर होता है और वह परिमित आंशिक योगों की सीमा (गणित) के अर्थ में अनंत श्रृंखला की सार्थकता को स्वीकार करता है, जबकि एक सख्त परिमितवादी ऐसा नहीं करता है। इसी प्रकार ऐतिहासिक रूप से, गणित का लिखित इतिहास इस प्रकार मौलिक रूप से फ़िनिटिस्ट था जब तक कि कैंटर ने 19 वीं शताब्दी के अंत में ट्रांसफ़िनिट नंबर बुनियादी संख्या का पदानुक्रम नहीं बना दिया था।
अनंत गणितीय वस्तुओं के संबंध में विचार
लियोपोल्ड क्रोनकर कैंटर के समुच्चय सिद्धांत के कट्टर विरोधी बने रहे:[1]
Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk.
God created the integers; all else is the work of man.
— 1886 lecture at the Berliner Naturforscher-Versammlung[2]
रूबेन गुडस्टीन फ़िनिटिज्म के एक अन्य प्रस्तावक थे। उनके कुछ कार्यों में फ़िनिटिस्ट नींव से गणितीय विश्लेषण का निर्माण सम्मलित था।
चूंकि उन्होंने इसका खंडन किया है, गणित पर लुडविग विट्गेन्स्टाइन के अधिकांश लेखन का अर्थवाद के साथ गहरा संबंध है।[3]
यदि फ़िनिटिस्ट की तुलना ट्रांसफ़िनिट संख्या (उदाहरण के लिए जॉर्ज कैंटर के अनंत के पदानुक्रम के समर्थक) से की जाती है, तो अरस्तू को भी फ़िनिटिस्ट के रूप में जाना जा सकता है। अरस्तू ने विशेष रूप से संभावित अनंत को सख्त परिमितवाद और वास्तविक अनंत के बीच एक मध्य विकल्प के रूप में प्रचारित किया है, (उत्तरार्द्ध प्रकृति में कभी न ख़त्म होने वाली किसी चीज़ का वास्तविकीकरण है, कैंटोरिस्ट वास्तविक अनंत के विपरीत, जिसमें ट्रांसफ़िनिट कार्डिनल और क्रमिक संख्याएँ सम्मलित हैं, जिनका प्रकृति की चीज़ों से कोई लेना-देना नहीं है):
But on the other hand to suppose that the infinite does not exist in any way leads obviously to many impossible consequences: there will be a beginning and end of time, a magnitude will not be divisible into magnitudes, number will not be infinite. If, then, in view of the above considerations, neither alternative seems possible, an arbiter must be called in.
— Aristotle, Physics, Book 3, Chapter 6
गणित के अन्य संबंधित दर्शन
अल्ट्राफ़िनिटिज़्म (जिसे अल्ट्राइंटुशनिज़्म के रूप में भी जाना जाता है) में फ़िनिटिज़्म की तुलना गणितीय वस्तुओं के प्रति और भी अधिक रूढ़िवादी रवैया है, और जब वे बहुत बड़े होते हैं तो परिमित गणितीय वस्तुओं के अस्तित्व पर आपत्ति होती है।
20वीं सदी के अंत में जॉन पेन मेबेरी ने वित्तीय गणित की एक प्रणाली विकसित की जिसे उन्होंने यूक्लिडियन अंकगणित कहा था। इसी प्रकार उनकी प्रणाली का सबसे महत्वपूर्ण सिद्धांत सामान्य रूप से पुनरावृत्त प्रक्रियाओं को दी जाने वाली विशेष मूलभूत स्थिति की पूर्ण और कठोर अस्वीकृति है, जिसमें विशेष रूप से पुनरावृत्त +1 द्वारा प्राकृतिक संख्याओं का निर्माण भी सम्मलित है। परिणाम स्वरुप, मेबेरी उन लोगों से तीव्र असहमत हैं जो अंतिम गणित को पीनो एक्सिओम्स अंकगणित के प्रथम-क्रम सिद्धांत या इसके किसी भी टुकड़े जैसे कि आदिम पुनरावर्ती अंकगणित के साथ समतुल्य करना चाहते हैं।
यह भी देखें
संदर्भ
- ↑ Eriksson, K.; Estep, D.; Johnson, C., eds. (2003). "17 Do Mathematicians Quarrel? §17.7 Cantor Versus Kronecker". Derivatives and Geometry in IR3. Applied Mathematics: Body and Soul. Vol. 1. Springer. pp. 230–2. ISBN 9783540008903.
- ↑ according to H. M. Weber's memorial article, Leopold Kronecker, in Jahresbericht der Deutschen Mathematiker-Vereinigung, Vol. 2 1891-92, page 19
- ↑ Zalta, Edward N. (ed.). "Wittgenstein's Philosophy of Mathematics". Stanford Encyclopedia of Philosophy.
अग्रिम पठन
- Feng Ye (2011). Strict Finitism and the Logic of Mathematical Applications. Springer. ISBN 978-94-007-1347-5.