परिमित माप: Difference between revisions

From Vigyanwiki
No edit summary
Line 1: Line 1:
{{refimprove|date=January 2018}}
माप सिद्धांत में, गणित की एक शाखा, एक '''परिमित माप''' या पूर्णतः परिमित माप <ref name="eommeasurespace"/> एक विशेष [[माप (गणित)]] है जो सदैव सीमित मान लेता है। परिमित मापों में [[संभाव्यता माप]] हैं। अधिक सामान्य मापों की तुलना में परिमित मापों को संभालना प्रायः आसान होता है और वे जिस [[सेट (गणित)|समुच्चय (गणित)]] पर परिभाषित होते हैं, उसके आधार पर विभिन्न प्रकार के विभिन्न गुण दिखाते हैं।
 
[[माप सिद्धांत]] में, गणित की एक शाखा, एक परिमित माप या पूर्णतः परिमित माप <ref name="eommeasurespace"/> एक विशेष [[माप (गणित)]] है जो सदैव सीमित मान लेता है। परिमित मापों में [[संभाव्यता माप]] हैं। अधिक सामान्य मापों की तुलना में परिमित मापों को संभालना प्रायः आसान होता है और वे जिस [[सेट (गणित)]] पर परिभाषित होते हैं, उसके आधार पर विभिन्न प्रकार के विभिन्न गुण दिखाते हैं।


== परिभाषा ==
== परिभाषा ==
Line 16: Line 14:


=== सामान्य मामला ===
=== सामान्य मामला ===
किसी भी मापने योग्य स्थान के लिए, परिमित माप [[कुल भिन्नता]] मानदंड के साथ [[हस्ताक्षरित उपाय|हस्ताक्षरित]] उपायों के बानाच स्थान में एक [[उत्तल शंकु]] बनाते हैं। परिमित मापों के महत्वपूर्ण उपसमुच्चय उप-संभाव्यता माप हैं, जो एक [[उत्तल सेट]] बनाते हैं, और संभाव्यता माप, जो हस्ताक्षरित उपायों और परिमित उपायों के मानक स्थान में [[इकाई क्षेत्र]] का प्रतिच्छेदन हैं।
किसी भी मापने योग्य स्थान के लिए, परिमित माप [[कुल भिन्नता]] मानदंड के साथ [[हस्ताक्षरित उपाय|हस्ताक्षरित]] उपायों के बानाच स्थान में एक [[उत्तल शंकु]] बनाते हैं। परिमित मापों के महत्वपूर्ण उपसमुच्चय उप-संभाव्यता माप हैं, जो एक [[उत्तल सेट|उत्तल समुच्चय]] बनाते हैं, और संभाव्यता माप, जो हस्ताक्षरित उपायों और परिमित उपायों के मानक स्थान में [[इकाई क्षेत्र]] का प्रतिच्छेदन हैं।


=== टोपोलॉजिकल स्पेस ===
=== टोपोलॉजिकल स्पेस ===
Line 26: Line 24:


=== पोलिश रिक्त स्थान ===
=== पोलिश रिक्त स्थान ===
यदि <math> X </math> एक [[पोलिश स्थान]] है और <math> \mathcal A </math> बोरेल है <math> \sigma</math>-बीजगणित, तो प्रत्येक परिमित माप एक [[नियमित माप]] है और इसलिए एक [[रेडॉन माप]] है। <ref name="Klenke248" /> यदि <math> X </math> पोलिश है, तो अशक्त टोपोलॉजी के साथ सभी परिमित उपायों का सेट भी पोलिश है। <ref name="Kallenberg112"/>
यदि <math> X </math> एक [[पोलिश स्थान]] है और <math> \mathcal A </math> बोरेल है <math> \sigma</math>-बीजगणित, तो प्रत्येक परिमित माप एक [[नियमित माप]] है और इसलिए एक [[रेडॉन माप]] है। <ref name="Klenke248" /> यदि <math> X </math> पोलिश है, तो अशक्त टोपोलॉजी के साथ सभी परिमित उपायों का समुच्चय भी पोलिश है। <ref name="Kallenberg112"/>





Revision as of 16:42, 11 July 2023

माप सिद्धांत में, गणित की एक शाखा, एक परिमित माप या पूर्णतः परिमित माप [1] एक विशेष माप (गणित) है जो सदैव सीमित मान लेता है। परिमित मापों में संभाव्यता माप हैं। अधिक सामान्य मापों की तुलना में परिमित मापों को संभालना प्रायः आसान होता है और वे जिस समुच्चय (गणित) पर परिभाषित होते हैं, उसके आधार पर विभिन्न प्रकार के विभिन्न गुण दिखाते हैं।

परिभाषा

एक माप (गणित) मापने योग्य स्थान पर यदि यह संतुष्ट करता है तो इसे एक सीमित माप कहा जाता है

उपायों की एकरसता से, इसका तात्पर्य है

यदि एक परिमित माप है, माप स्थान इसे परिमित माप स्थान या पूर्णतः परिमित माप स्थान कहा जाता है।[1]


गुण

सामान्य मामला

किसी भी मापने योग्य स्थान के लिए, परिमित माप कुल भिन्नता मानदंड के साथ हस्ताक्षरित उपायों के बानाच स्थान में एक उत्तल शंकु बनाते हैं। परिमित मापों के महत्वपूर्ण उपसमुच्चय उप-संभाव्यता माप हैं, जो एक उत्तल समुच्चय बनाते हैं, और संभाव्यता माप, जो हस्ताक्षरित उपायों और परिमित उपायों के मानक स्थान में इकाई क्षेत्र का प्रतिच्छेदन हैं।

टोपोलॉजिकल स्पेस

यदि एक हॉसडॉर्फ़ स्थान है और इसमें बोरेल सम्मलित है -बीजगणित तो प्रत्येक परिमित माप एक स्थानीय रूप से परिमित माप बोरेल माप भी है।

मीट्रिक रिक्त स्थान

यदि एक मीट्रिक स्थान है और फिर से बोरेल है -बीजगणित, उपायों के अशक्त अभिसरण को परिभाषित किया जा सकता है। संबंधित टोपोलॉजी को अशक्त टोपोलॉजी कहा जाता है और यह सभी बंधे हुए निरंतर कार्यों की प्रारंभिक टोपोलॉजी है . अशक्त टोपोलॉजी कार्यात्मक विश्लेषण में अशक्त* टोपोलॉजी से मेल खाती है। यदि वियोज्य स्थान भी है, अशक्त अभिसरण को लेवी-प्रोखोरोव मीट्रिक द्वारा मीट्रिक किया जाता है। [2]


पोलिश रिक्त स्थान

यदि एक पोलिश स्थान है और बोरेल है -बीजगणित, तो प्रत्येक परिमित माप एक नियमित माप है और इसलिए एक रेडॉन माप है। [3] यदि पोलिश है, तो अशक्त टोपोलॉजी के साथ सभी परिमित उपायों का समुच्चय भी पोलिश है। [4]


संदर्भ

  1. 1.0 1.1 Anosov, D.V. (2001) [1994], "Measure space", Encyclopedia of Mathematics, EMS Press
  2. Klenke, Achim (2008). Probability Theory. Berlin: Springer. p. 252. doi:10.1007/978-1-84800-048-3. ISBN 978-1-84800-047-6.
  3. Klenke, Achim (2008). Probability Theory. Berlin: Springer. p. 248. doi:10.1007/978-1-84800-048-3. ISBN 978-1-84800-047-6.
  4. Kallenberg, Olav (2017). Random Measures, Theory and Applications. Probability Theory and Stochastic Modelling. Vol. 77. Switzerland: Springer. p. 112. doi:10.1007/978-3-319-41598-7. ISBN 978-3-319-41596-3.