नियमित माप: Difference between revisions

From Vigyanwiki
m (10 revisions imported from alpha:नियमित_माप)
No edit summary
 
Line 66: Line 66:


{{Measure theory}}
{{Measure theory}}
[[Category: उपाय (माप सिद्धांत)]]


 
[[Category:CS1 errors]]
 
[[Category:Collapse templates]]
[[Category: Machine Translated Page]]
[[Category:Created On 03/07/2023]]
[[Category:Created On 03/07/2023]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:उपाय (माप सिद्धांत)]]

Latest revision as of 22:13, 15 July 2023

गणित में, संस्थानिक जगह पर एक नियमित माप एक माप (गणित) है, जिसके लिए प्रत्येक मापने योग्य संग्रह को ऊपर से खुले मापने योग्य संग्रहों द्वारा और नीचे से सुगठित मापने योग्य संग्रहों द्वारा अनुमानित किया जा सकता है।

परिभाषा

मान लीजिए (X, T) एक आंतरिक स्थान है और Σ को X पर एक सिग्मा बीजगणित(σ-बीजगणित) है। मान लीजिए μ (X, Σ) पर एक माप है। X के मापने योग्य उपसमुच्चय A को 'आंतरिक नियमित' कहा जाता है यदि

और कहा गया है कि यदि बाहरी नियमित हो

  • एक माप को आंतरिक नियमित माप कहा जाता है यदि प्रत्येक मापने योग्य संग्रह आंतरिक नियमित है। कुछ लेखक एक अलग परिभाषा का उपयोग करते हैं: एक माप को आंतरिक नियमित कहा जाता है यदि प्रत्येक खुला मापनीय संग्रह आंतरिक नियमित है।
  • एक माप को बाहरी नियमित कहा जाता है यदि प्रत्येक मापने योग्य संग्रह बाहरी नियमित है।
  • किसी माप को नियमित कहा जाता है यदि वह बाहरी नियमित और आंतरिक नियमित हो।

उदाहरण

नियमित उपाय

  • वास्तविक रेखा पर लेब्सेग माप एक नियमित माप है: लेब्सेग माप के लिए नियमितता प्रमेय देखें।
  • किसी भी स्थानीय रूप से सुगठित σ-सुगठित हॉसडॉर्फ स्थान पर कोई भी बेयर माप संभाव्यता माप एक नियमित माप है।
  • अपनी सांस्थिति , या सुगठित मीट्रिक स्थान या रेडॉन स्थान के लिए गणनीय आधार के साथ स्थानीय रूप से सुगठित हॉसडॉर्फ स्थान पर कोई भी बोरेल माप संभाव्यता माप नियमित है।

आंतरिक नियमित उपाय जो बाहरी नियमित नहीं हैं

  • अपनी सामान्य सांस्थिति के साथ वास्तविक रेखा पर माप का एक उदाहरण जो बाहरी नियमित नहीं है वह माप μ है जहां , , और किसी अन्य संग्रह के लिए .
  • तल पर बोरेल माप जो किसी भी बोरेल संग्रह को उसके क्षैतिज खंडों के (1-आयामी) मापों का योग निर्दिष्ट करता है, आंतरिक नियमित है लेकिन बाहरी नियमित नहीं है, क्योंकि प्रत्येक गैर-रिक्त खुले संग्रह में अनंत माप होता है। इस उदाहरण का एक रूप लेबेस्ग माप के साथ वास्तविक रेखा की अनगिनत प्रतियों का असंयुक्त संघ है।
  • स्थानीय रूप से सुगठित हॉसडॉर्फ स्थान पर बोरेल माप μ का एक उदाहरण जो आंतरिक नियमित, σ-परिमित है, और स्थानीय रूप से परिमित है लेकिन बाहरी नियमित नहीं है, बोर्बाकी (2004, खंड 1 का अभ्यास 5) द्वारा इस प्रकार दिया गया है। आंतरिक स्थान ,सांस्थिति इस प्रकार दी गई है। एकल अंक (1/n,m/n2) सभी खुले संग्रह हैं। बिंदु (0,y) के पड़ोस का आधार वेजेज द्वारा दिया जाता है जिसमें फॉर्म (u,v) के X में सभी बिंदु सम्मिलित होते हैं |v − y| ≤|यू| ≤ 1/n एक धनात्मक पूर्णांक n के लिए। यह स्थान एक्स स्थानीय रूप से सुगठित है। माप μ को y-अक्ष का माप 0 मानकर और बिंदु (1/n,m/n2) देकर दिया जाता है) का माप 1/एन3 है. यह माप आंतरिक नियमित और स्थानीय रूप से परिमित है, लेकिन बाहरी नियमित नहीं है क्योंकि y-अक्ष वाले किसी भी खुले संग्रह में अनंत माप होता है।

बाहरी नियमित उपाय जो आंतरिक नियमित नहीं हैं

  • यदि पिछले उदाहरण में μ आंतरिक नियमित माप है, और M, M(S) = inf द्वारा दिया गया माप हैUSμ(यू) जहां बोरेल संग्रह एस वाले सभी खुले संग्रहों पर जानकारी ली जाती है, तो एम स्थानीय रूप से सुगठित हॉसडॉर्फ स्थान पर एक बाहरी नियमित स्थानीय परिमित बोरेल माप है जो मजबूत अर्थों में आंतरिक नियमित नहीं है, यदपि सभी खुले संग्रह हैं आंतरिक नियमित इसलिए यह कमजोर अर्थ में आंतरिक नियमित है। माप M और μ सभी खुले संग्रहों , सभी सुगठित संग्रहों और उन सभी संग्रहों पर मेल खाते हैं जिन पर M का माप सीमित है। Y-अक्ष में अनंत M-माप है, यदपि इसके सभी सुगठित उपसमुच्चय का माप 0 है।
  • असतत सांस्थिति के साथ एक मापने योग्य कार्डिनल में बोरेल संभाव्यता माप होता है जैसे कि प्रत्येक सुगठित उपसमुच्चय का माप 0 होता है, इसलिए यह माप बाहरी नियमित है लेकिन आंतरिक नियमित नहीं है। मापने योग्य कार्डिनल्स के अस्तित्व को ZF संग्रह सिद्धांत में साबित नहीं किया जा सकता है, लेकिन (2013 तक) इसे इसके अनुरूप माना जाता है।

ऐसे उपाय जो न तो आंतरिक और न ही बाहरी नियमित हैं

  • सभी क्रमवाचक संख्या का स्थान अधिकतम पहले अगणित क्रमवाचक संख्या Ω के बराबर, खुले अंतरालों द्वारा उत्पन्न सांस्थिति के साथ, एक सुगठित हॉसडॉर्फ स्थान है। वह माप जो गणनीय क्रमवाचक संख्या के एक असंबद्ध बंद उपसमुच्चय वाले बोरेल संग्रहों को माप 1 प्रदान करता है और अन्य बोरेल संग्रहों को 0 प्रदान करता है, एक बोरेल संभाव्यता माप है जो न तो आंतरिक नियमित है और न ही बाहरी नियमित है।

यह भी देखें

संदर्भ

  • बिल्लिंग्सली, पैट्रिक (1999). संभाव्यता उपायों का अभिसरण. न्यूयॉर्क: जॉन विली एंड संस, इंक. ISBN 0-471-19745-9. {{cite book}}: Invalid |url-access=पंजीकरण (help)
  • बोर्बाकी, निकोलस (2004). एकीकरण I. स्प्रिंगर-वेरलाग. ISBN 3-540-41129-1.
  • पार्थसारथी, के. आर. (2005). मीट्रिक स्थानों पर संभाव्यता माप. एएमएस चेल्सी प्रकाशन, प्रोविडेंस, आरआई. p. xii+276. ISBN 0-8218-3889-एक्स. {{cite book}}: Check |isbn= value: invalid character (help) MR2169627 (See chapter 2)
  • डुडले, आर. एम. (1989). वास्तविक विश्लेषण और संभाव्यता. चैपमैन और हॉल.