मल्टीवे डेटा विश्लेषण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 27: Line 27:
   |year=2008
   |year=2008
   |isbn=9780470237991
   |isbn=9780470237991
}}</ref> उस समय मल्टीवे विश्लेषण के अनुप्रयोग क्षेत्रों में सांख्यिकी [[अर्थमिति]] और [[साइकोमेट्रिक्स]] सम्मिलित थे। वर्तमान के वर्षों में [[ रसायन विज्ञान |रसायन विज्ञान]] , [[कृषि]], [[सामाजिक नेटवर्क विश्लेषण]] और [[खाद्य उद्योग]] को सम्मिलित करने के लिए अनुप्रयोगों का विस्तार हुआ है।<ref name=Bro1998>
}}</ref> उस समय मल्टीवे विश्लेषण के अनुप्रयोग क्षेत्रों में सांख्यिकी [[अर्थमिति]] और [[साइकोमेट्रिक्स]] सम्मिलित थे। वर्तमान के वर्षों में [[ रसायन विज्ञान |रसायन विज्ञान]], [[कृषि]], [[सामाजिक नेटवर्क विश्लेषण]] और [[खाद्य उद्योग]] को सम्मिलित करने के लिए अनुप्रयोगों का विस्तार हुआ है।<ref name=Bro1998>
{{cite thesis
{{cite thesis
   |url=http://curis.ku.dk/ws/files/13035961/rasmus_bro.pdf
   |url=http://curis.ku.dk/ws/files/13035961/rasmus_bro.pdf
Line 43: Line 43:
इस अर्थ में हम विश्लेषण करने के लिए डेटा के विभिन्न विधियो को परिभाषित कर सकते हैं:
इस अर्थ में हम विश्लेषण करने के लिए डेटा के विभिन्न विधियो को परिभाषित कर सकते हैं:
* एक तरफ़ा डेटा: एक डेटा बिंदु <math>I_0</math>-आयाम, <math>{\bf a}\in {\mathbb C}^{I_0}                                                                                                                                                                           
* एक तरफ़ा डेटा: एक डेटा बिंदु <math>I_0</math>-आयाम, <math>{\bf a}\in {\mathbb C}^{I_0}                                                                                                                                                                           
                                                                                                                               </math> एक [[वेक्टर (गणित और भौतिकी)]] या डेटा बिंदु है जो एक-तरफ़ा सरणी डेटा संरचना में संग्रहीत होता है।
                                                                                                                               </math> एक [[वेक्टर (गणित और भौतिकी)|सदिश (गणित और भौतिकी)]] या डेटा बिंदु है जो एक-तरफ़ा सरणी डेटा संरचना में संग्रहीत होता है।
*दो-तरफ़ा डेटा: <math>I_1</math> डेटा बिंदुओं <math>{\bf a}\in {\mathbb C}^{I_0}</math> का एक संग्रह दो-तरफ़ा सरणी, <math>{\bf A}\in {\mathbb C}^{I_0\times I_1}</math> में संग्रहीत किया जाता है। अलग-अलग आयामों के स्थितियों में ऐसे डेटा की कल्पना करने के लिए एक स्प्रेडशीट का उपयोग किया जा सकता है।
*दो-तरफ़ा डेटा: <math>I_1</math> डेटा बिंदुओं <math>{\bf a}\in {\mathbb C}^{I_0}</math> का एक संग्रह दो-तरफ़ा सरणी, <math>{\bf A}\in {\mathbb C}^{I_0\times I_1}</math> में संग्रहीत किया जाता है। अलग-अलग आयामों के स्थितियों में ऐसे डेटा की कल्पना करने के लिए एक स्प्रेडशीट का उपयोग किया जा सकता है।
* तीन-तरफा डेटा: डेटा का संग्रह <math>{\bf a}\in {\mathbb C}^{I_0}                                                                                                                                                                                  </math> जिसमें भिन्नता के दो विधि हैं, उसे तीन-तरफ़ा सरणी में संग्रहीत किया जाता है, <math>{\bf A}\in {\mathbb C}^{I_0\times I_1\times I_2}                                                                                                                                 
* तीन-तरफा डेटा: डेटा का संग्रह <math>{\bf a}\in {\mathbb C}^{I_0}                                                                                                                                                                                  </math> जिसमें भिन्नता के दो विधि हैं, उसे तीन-तरफ़ा सरणी में संग्रहीत किया जाता है, <math>{\bf A}\in {\mathbb C}^{I_0\times I_1\times I_2}                                                                                                                                 

Revision as of 15:39, 13 July 2023


मल्टीवे डेटा विश्लेषण मल्टीवे सरणी के रूप में अवलोकनों के संग्रह का प्रतिनिधित्व करके बड़े डेटा सेट का विश्लेषण करने की एक विधि है। (C+1)-वे सरणी में डेटा संगठन का उचित विकल्प, और विश्लेषण तकनीकें अन्य विधियों से न पहचाने गए अंतर्निहित डेटा में पैटर्न प्रकट कर सकती हैं।[1]

इतिहास

मल्टीवे डेटा विश्लेषण के अध्ययन को पहली बार 1988 में आयोजित एक सम्मेलन के परिणाम के रूप में औपचारिक रूप दिया गया था। इस सम्मेलन का परिणाम विशेष रूप से इस क्षेत्र को संबोधित पहला पाठ था कोप्पी और बोलास्को का मल्टीवे डेटा विश्लेषण था।[2] उस समय मल्टीवे विश्लेषण के अनुप्रयोग क्षेत्रों में सांख्यिकी अर्थमिति और साइकोमेट्रिक्स सम्मिलित थे। वर्तमान के वर्षों में रसायन विज्ञान, कृषि, सामाजिक नेटवर्क विश्लेषण और खाद्य उद्योग को सम्मिलित करने के लिए अनुप्रयोगों का विस्तार हुआ है।[3]

मल्टीवे डेटा विश्लेषण की संरचना

मल्टीवे डेटा

मल्टीवे डेटा विश्लेषक डेटा का विश्लेषण करने के लिए उपयोग की जाने वाली विधियों या मॉडलों के लिए मोड शब्द को आरक्षित करते समय डेटा भिन्नता के संख्या स्रोतों को संदर्भित करने के लिए वे शब्द का उपयोग करते हैं।[2]: xviii 

इस अर्थ में हम विश्लेषण करने के लिए डेटा के विभिन्न विधियो को परिभाषित कर सकते हैं:

  • एक तरफ़ा डेटा: एक डेटा बिंदु -आयाम, एक सदिश (गणित और भौतिकी) या डेटा बिंदु है जो एक-तरफ़ा सरणी डेटा संरचना में संग्रहीत होता है।
  • दो-तरफ़ा डेटा: डेटा बिंदुओं का एक संग्रह दो-तरफ़ा सरणी, में संग्रहीत किया जाता है। अलग-अलग आयामों के स्थितियों में ऐसे डेटा की कल्पना करने के लिए एक स्प्रेडशीट का उपयोग किया जा सकता है।
  • तीन-तरफा डेटा: डेटा का संग्रह जिसमें भिन्नता के दो विधि हैं, उसे तीन-तरफ़ा सरणी में संग्रहीत किया जाता है, . ऐसा डेटा अलग-अलग स्थानों पर तापमान का प्रतिनिधित्व कर सकता है (दो-तरफा डेटा) अलग-अलग समय पर नमूना लिया गया (तीन-तरफ़ा डेटा के लिए अग्रणी)
  • समान स्प्रेडशीट सादृश्य का उपयोग करके चार-तरफा डेटा को अलग-अलग कार्यपुस्तिकाओं से भरे फ़ाइल फ़ोल्डर के रूप में दर्शाया जा सकता है।
  • पांच-तरफ़ा डेटा और छह-तरफ़ा डेटा को डेटा एकत्रीकरण के समान उच्च स्तर द्वारा दर्शाया जा सकता है।

सामान्यतः मल्टीवे डेटा को मल्टीवे ऐरे में संग्रहित किया जाता है और इसे अलग-अलग समय पर या अलग-अलग स्थानों पर अलग-अलग पद्धतियों का उपयोग करके मापा जा सकता है और इसमें विसंगतियां हो सकती हैं जैसे कि लापता डेटा या डेटा प्रतिनिधित्व में विसंगतियां है।

मल्टीवे मॉडल

मल्टीवे एप्लिकेशन

मल्टीवे डेटा विश्लेषण को विभिन्न मल्टीवे अनुप्रयोगों में नियोजित किया जा सकता है जिससे मल्टीवे डेटासेट में छिपी मल्टीलाइनर संरचना को खोजने की समस्या का समाधान किया जा सकता है। विभिन्न क्षेत्रों में अनुप्रयोगों के उदाहरण निम्नलिखित हैं:[4]

मल्टीवे प्रोसेसिंग

मल्टीवे प्रोसेसिंग विशेष मल्टीवे एप्लिकेशन की विशिष्ट आवश्यकता को संबोधित करके मल्टीवे डेटा को वांछनीय स्तर पर परिवर्तित करने के लिए डिज़ाइन और निर्धारित मल्टीवे मॉडल का निष्पादन है। पोटेंशियोमेट्रिक इलेक्ट्रॉनिक जीभ से उत्पन्न डेटा का एक विशिष्ट उदाहरण प्रासंगिक मल्टीवे प्रोसेसिंग को दर्शाता है।[8]

यह भी देखें

संदर्भ

  1. Coppi, R.; Bolasco, S., eds. (1989). Multiway Data Analysis. Amsterdam: North-Holland. ISBN 9780444874108.
  2. 2.0 2.1 Kroonenberg, Pieter M. (2008). Applied Multiway Data Analysis. Wiley Series in Probability and Statistics. Vol. 702. John Wiley & Sons. p. xv. ISBN 9780470237991.
  3. Bro, Rasmus (20 November 1998). Multi-way Analysis in the Food Industry: Models, Algorithms, and Applications (PDF) (Ph.D. thesis). University of Amsterdam.
  4. Acar, Evrim; Yener, Bulent. Unsupervised Multiway Data Analysis: A Literature Survey (PDF) (Thesis). Rensselaer Polytechnic Institute.
  5. Vasilescu, M.A.O.; Terzopoulos, D. (2002). "Multilinear Analysis of Image Ensembles: TensorFaces" (PDF). Lecture Notes in Computer Science 2350; (Presented at Proc. 7th European Conference on Computer Vision (ECCV'02), Copenhagen, Denmark). Springer, Berlin, Heidelberg. doi:10.1007/3-540-47969-4_30. ISBN 978-3-540-43745-1. {{cite journal}}: Cite journal requires |journal= (help)
  6. M.A.O. Vasilescu, D. Terzopoulos (2005) "Multilinear Independent Component Analysis", "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, June 2005, vol.1, 547–553."
  7. M.A.O. Vasilescu (2002) "Human Motion Signatures: Analysis, Synthesis, Recognition," Proceedings of International Conference on Pattern Recognition (ICPR 2002), Vol. 3, Quebec City, Canada, Aug, 2002, 456–460.
  8. Cartas, Raul; Mimendia, Aitor; Legin, Andrey; del Valle, Manel (2011). "Multiway Processing of Data Generated with a Potentiometric Electronic Tongue in a SIA System". Electroanalysis. 23 (4): 953–961. doi:10.1002/elan.201000642.