विलगित विलक्षणता (आइसोलेटेड सिंगुलेरिटी): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:
{{Complex analysis sidebar}}
{{Complex analysis sidebar}}


[[जटिल विश्लेषण|सम्मिश्र विश्लेषण]] में, गणित की एक शाखा, एक '''विलगित विलक्षणता (आइसोलेटेड सिंगुलेरिटी)''' वह है जिसके निकट कोई अन्य [[गणितीय विलक्षणता]] नहीं है। दूसरे शब्दों में, एक सम्मिश्र संख्या ''z<sub>0</sub>'' एक फलन ''f'' की एक अलग विलक्षणता है यदि z<sub>0</sub> पर केंद्रित एक खुली ''[[डिस्क (गणित)]] D'' उपस्थित है जैसे कि f ''D'' \ {z<sub>0</sub>} पर ''[[होलोमोर्फिक फ़ंक्शन|होलोमोर्फिक फलन]]'' है, जो कि z<sub>0</sub> को निकालकर D से प्राप्त ''[[सेट (गणित)|समुच्चय (गणित)]]'' पर है।
[[जटिल विश्लेषण|सम्मिश्र विश्लेषण]] में, गणित की एक शाखा, एक '''विलगित विलक्षणता (आइसोलेटेड सिंगुलेरिटी)''' वह है जिसके निकट कोई अन्य [[गणितीय विलक्षणता]] नहीं है। दूसरे शब्दों में, एक सम्मिश्र संख्या ''z<sub>0</sub>'' एक फलन ''f'' की एक अलग विलक्षणता है यदि z<sub>0</sub> पर केंद्रित एक विवृत ''[[डिस्क (गणित)]] D'' उपस्थित है जैसे कि f ''D'' \ {z<sub>0</sub>} पर ''[[होलोमोर्फिक फ़ंक्शन|होलोमोर्फिक फलन]]'' है, जो कि z<sub>0</sub> को निकालकर D से प्राप्त ''[[सेट (गणित)|समुच्चय (गणित)]]'' पर है।


औपचारिक रूप से, और [[सामान्य टोपोलॉजी]] के सामान्य सीम के अन्दर, एक होलोमोर्फिक फलन की एक अलग विलक्षणता एक फलन <math>f: \Omega\to \mathbb {C}</math> डोमेन <math>\Omega</math> की सीमा <math>\partial \Omega</math> का कोई [[पृथक बिंदु]] है। दूसरे शब्दों में, यदि <math>U</math>, <math>\mathbb {C}</math>, <math>a\in U</math> का एक खुला उपसमुच्चय है और <math>f: U\setminus \{a\}\to \mathbb {C}</math> एक होलोमोर्फिक फलन है, तो <math>a</math>, <math>f</math> की एक आइसोलेटेड सिंगुलेरिटी है।
औपचारिक रूप से, और [[सामान्य टोपोलॉजी]] के सामान्य सीम के अन्दर, एक होलोमोर्फिक फलन की एक अलग विलक्षणता एक फलन <math>f: \Omega\to \mathbb {C}</math> डोमेन <math>\Omega</math> की सीमा <math>\partial \Omega</math> का कोई [[पृथक बिंदु]] है। दूसरे शब्दों में, यदि <math>U</math>, <math>\mathbb {C}</math>, <math>a\in U</math> का एक खुला उपसमुच्चय है और <math>f: U\setminus \{a\}\to \mathbb {C}</math> एक होलोमोर्फिक फलन है, तो <math>a</math>, <math>f</math> की एक आइसोलेटेड सिंगुलेरिटी है।
Line 24: Line 24:
* फलन <math display="inline">\tan\left(\frac{1}{z}\right)</math> <math>\mathbb{C}\setminus\{0\}</math> पर [[मेरोमोर्फिक]] है, जिसमें प्रत्येक <math> n\in\mathbb{N}_0</math> के लिए <math display="inline">z_n = \left(\frac{\pi}{2}+n\pi\right)^{-1}</math> पर सरल ध्रुव होते हैं। चूँकि <math>z_n\rightarrow 0</math>, <math>0</math> पर केन्द्रित प्रत्येक छिद्रित डिस्क के अन्दर इसके अन्दर अनंत संख्या में विलक्षणताएँ होती हैं, इसलिए <math>0</math> के आसपास <math display="inline">\tan\left(\frac{1}{z}\right)</math> के लिए कोई लॉरेंट विस्तार उपलब्ध नहीं है, जो वास्तव में इसके ध्रुवों का एक क्लस्टर बिंदु है। जो वास्तव में इसके ध्रुवों का क्लस्टर बिंदु है।  
* फलन <math display="inline">\tan\left(\frac{1}{z}\right)</math> <math>\mathbb{C}\setminus\{0\}</math> पर [[मेरोमोर्फिक]] है, जिसमें प्रत्येक <math> n\in\mathbb{N}_0</math> के लिए <math display="inline">z_n = \left(\frac{\pi}{2}+n\pi\right)^{-1}</math> पर सरल ध्रुव होते हैं। चूँकि <math>z_n\rightarrow 0</math>, <math>0</math> पर केन्द्रित प्रत्येक छिद्रित डिस्क के अन्दर इसके अन्दर अनंत संख्या में विलक्षणताएँ होती हैं, इसलिए <math>0</math> के आसपास <math display="inline">\tan\left(\frac{1}{z}\right)</math> के लिए कोई लॉरेंट विस्तार उपलब्ध नहीं है, जो वास्तव में इसके ध्रुवों का एक क्लस्टर बिंदु है। जो वास्तव में इसके ध्रुवों का क्लस्टर बिंदु है।  
* फलन <math display="inline">\csc \left(\frac {\pi} {z}\right)</math> 0 पर विलक्षणता होती है जो पृथक नहीं होती है, क्योंकि प्रत्येक पूर्णांक के गुणन व्युत्क्रम में अतिरिक्त विलक्षणताएँ होती हैं, जो स्वैच्छिक रूप से 0 के निकट स्थित होती हैं (चूँकि इन व्युत्क्रमों पर विलक्षणताएँ स्वयं पृथक होती हैं)।
* फलन <math display="inline">\csc \left(\frac {\pi} {z}\right)</math> 0 पर विलक्षणता होती है जो पृथक नहीं होती है, क्योंकि प्रत्येक पूर्णांक के गुणन व्युत्क्रम में अतिरिक्त विलक्षणताएँ होती हैं, जो स्वैच्छिक रूप से 0 के निकट स्थित होती हैं (चूँकि इन व्युत्क्रमों पर विलक्षणताएँ स्वयं पृथक होती हैं)।
*[[मैकलॉरिन श्रृंखला]] <math display="inline">\sum_{n=0}^{\infty}z^{2^n}</math> के माध्यम से परिभाषित फलन <math>0</math> केन्द्रित खुली इकाई डिस्क के अंदर एकत्रित होती है और इकाई वृत्त इसकी प्राकृतिक सीमा है।
*[[मैकलॉरिन श्रृंखला]] <math display="inline">\sum_{n=0}^{\infty}z^{2^n}</math> के माध्यम से परिभाषित फलन <math>0</math> केन्द्रित विवृत इकाई डिस्क के अंदर एकत्रित होती है और इकाई वृत्त इसकी प्राकृतिक सीमा है।


== बाहरी संबंध ==
== बाहरी संबंध ==

Revision as of 14:25, 14 July 2023

सम्मिश्र विश्लेषण में, गणित की एक शाखा, एक विलगित विलक्षणता (आइसोलेटेड सिंगुलेरिटी) वह है जिसके निकट कोई अन्य गणितीय विलक्षणता नहीं है। दूसरे शब्दों में, एक सम्मिश्र संख्या z0 एक फलन f की एक अलग विलक्षणता है यदि z0 पर केंद्रित एक विवृत डिस्क (गणित) D उपस्थित है जैसे कि f D \ {z0} पर होलोमोर्फिक फलन है, जो कि z0 को निकालकर D से प्राप्त समुच्चय (गणित) पर है।

औपचारिक रूप से, और सामान्य टोपोलॉजी के सामान्य सीम के अन्दर, एक होलोमोर्फिक फलन की एक अलग विलक्षणता एक फलन डोमेन की सीमा का कोई पृथक बिंदु है। दूसरे शब्दों में, यदि , , का एक खुला उपसमुच्चय है और एक होलोमोर्फिक फलन है, तो , की एक आइसोलेटेड सिंगुलेरिटी है।

खुले उपसमुच्चय पर मेरोमोर्फिक फलन की प्रत्येक विलक्षणता पृथक है, लेकिन केवल विलक्षणताओं का पृथक्करण यह गारंटी देने के लिए पर्याप्त नहीं है कि कोई फलन मेरोमोर्फिक है। सम्मिश्र विश्लेषण के कई महत्वपूर्ण उपकरण जैसे लॉरेंट श्रृंखला और अवशेष प्रमेय के लिए आवश्यक है कि फलन की सभी प्रासंगिक विलक्षणताओं को अलग किया जाए।

आइसोलेटेड सिंगुलेरिटीएँ तीन प्रकार की होती हैं: हटाने योग्य विलक्षणता, ध्रुव (सम्मिश्र विश्लेषण) और आवश्यक विलक्षणता

उदाहरण

  • फलन आइसोलेटेड सिंगुलेरिटी के रूप में 0 है।
  • सहसंयोजक फलन प्रत्येक पूर्णांक आइसोलेटेड सिंगुलेरिटी के रूप में है।

असंबद्ध विलक्षणताएं

आइसोलेटेड सिंगुलेरिटीओं के अतिरिक्त, वेरिएबल के सम्मिश्र फलन अन्य विलक्षण व्यवहार प्रदर्शित कर सकते हैं। अर्थात्, दो प्रकार की असंबद्ध विलक्षणताएँ उपस्थित हैं:

  • क्लस्टर बिंदु, अर्थात् आइसोलेटेड सिंगुलेरिटीओं के सीमा बिंदु: यदि वे सभी ध्रुव हैं, तो उनमें से प्रत्येक पर लॉरेंट श्रृंखला के विस्तार को स्वीकार करने के अतिरिक्त, इसकी सीमा पर ऐसा कोई विस्तार संभव नहीं है।
  • प्राकृतिक सीमाएँ, अर्थात् कोई भी गैर-पृथक समुच्चय (उदाहरण के लिए वक्र) जिसके चारों ओर फलन विश्लेषणात्मक निरंतरता (या उनके बाहर यदि वे रीमैन क्षेत्र में बंद वक्र हैं) नहीं हो सकते हैं।

उदाहरण

  • फलन पर मेरोमोर्फिक है, जिसमें प्रत्येक के लिए पर सरल ध्रुव होते हैं। चूँकि , पर केन्द्रित प्रत्येक छिद्रित डिस्क के अन्दर इसके अन्दर अनंत संख्या में विलक्षणताएँ होती हैं, इसलिए के आसपास के लिए कोई लॉरेंट विस्तार उपलब्ध नहीं है, जो वास्तव में इसके ध्रुवों का एक क्लस्टर बिंदु है। जो वास्तव में इसके ध्रुवों का क्लस्टर बिंदु है।
  • फलन 0 पर विलक्षणता होती है जो पृथक नहीं होती है, क्योंकि प्रत्येक पूर्णांक के गुणन व्युत्क्रम में अतिरिक्त विलक्षणताएँ होती हैं, जो स्वैच्छिक रूप से 0 के निकट स्थित होती हैं (चूँकि इन व्युत्क्रमों पर विलक्षणताएँ स्वयं पृथक होती हैं)।
  • मैकलॉरिन श्रृंखला के माध्यम से परिभाषित फलन केन्द्रित विवृत इकाई डिस्क के अंदर एकत्रित होती है और इकाई वृत्त इसकी प्राकृतिक सीमा है।

बाहरी संबंध

  • Ahlfors, L., Complex Analysis, 3 ed. (McGraw-Hill, 1979).
  • Rudin, W., Real and Complex Analysis, 3 ed. (McGraw-Hill, 1986).
  • Weisstein, Eric W. "Singularity". MathWorld.