क्रम टोपोलॉजी: Difference between revisions
No edit summary |
|||
Line 19: | Line 19: | ||
== रैखिक रूप से क्रमित अंतराल के उप-अंतराल का उदाहरण जिसकी सांस्थितिकी क्रम सांस्थितिकी नहीं है == | == रैखिक रूप से क्रमित अंतराल के उप-अंतराल का उदाहरण जिसकी सांस्थितिकी क्रम सांस्थितिकी नहीं है == | ||
यद्यपि उपरोक्त अनुभाग में ''Y'' = {–1} ∪ {1/''n''}<sub>''n''∈'''N'''</sub> की उप-अंतराल सांस्थितिकी को ''Y'' पर प्रेरित क्रम द्वारा उत्पन्न नहीं किया गया है, फिर भी यह ''Y'' पर एक क्रम सांस्थितिकी है वास्तव में, उपअंतराल सांस्थितिकी में प्रत्येक बिंदु पृथक (अर्थात, एकल {y} ''Y'' में प्रत्येक y के लिए ''Y'' में विवृत है) है, इसलिए उप-अंतराल सांस्थितिकी ''Y'' पर (वह सांस्थितिकी जिसमें ''Y'' का प्रत्येक उपसमुच्चय विवृत समुच्चय है) [[असतत टोपोलॉजी|असतत सांस्थितिकी]] है, और किसी भी समुच्चय पर असतत सांस्थितिकी क्रम सांस्थितिकी है। ''Y'' पर कुल क्रम को परिभाषित करने के लिए जो ''Y'' पर असतत सांस्थितिकी उत्पन्न करता है, केवल -1 को ''Y'' का सबसे बड़ा तत्व परिभाषित करके ''Y'' पर प्रेरित क्रम को संशोधित करें और अन्यथा अन्य बिंदुओं के लिए समान क्रम रखें, ताकि इस नए क्रम में (इसे ''<''<sub>1</sub> कहें) हमारे पास सभी ''n'' ∈ '''N''' के लिए 1/''n'' ''<''<sub>1</sub> –1 है। फिर, ''<''<sub>1</sub> द्वारा उत्पन्न ''Y'' पर क्रम सांस्थितिकी में, ''Y'' का प्रत्येक बिंदु ''Y'' में पृथक होता है। | |||
हम यहां रैखिक रूप से | हम यहां रैखिक रूप से क्रमित सांस्थितिक अंतराल ''X'' के उपसमुच्चय ''Z'' को इस प्रकार परिभाषित करना चाहते हैं कि ''Z'' पर कोई भी कुल क्रम ''Z'' पर उपअंतराल सांस्थितिकी उत्पन्न नहीं करता है, ताकि उपअंतराल सांस्थितिकी क्रम सांस्थितिक न हो, भले ही यह उस अंतराल की उपअंतराल सांस्थितिकी हो, जिसकी सांस्थितिकी क्रम सांस्थितिकी है। | ||
मान लीजिए <math>Z = \{-1\}\cup (0,1) </math> वास्तविक रेखा में है। पहले जैसा ही तर्क दिखाता है कि ''Z'' पर उपअंतराल सांस्थितिकी ''Z'' पर प्रेरित क्रम सांस्थितिकी के बराबर नहीं है, लेकिन कोई यह दिखा सकता है कि ''Z'' पर उपअंतराल सांस्थितिकी ''Z'' पर किसी भी क्रम सांस्थितिकी के बराबर नहीं हो सकती है। | |||
तर्क इस प्रकार है। विरोधाभास के माध्यम से मान लीजिए कि ''Z'' पर कुछ दृढ़ कुल क्रम < है, जैसे कि < द्वारा उत्पन्न क्रम सांस्थितिकी ''Z'' पर उपअंतराल सांस्थितिकी (ध्यान दें कि हम यह नहीं मान रहे हैं कि < ''Z'' पर प्रेरित क्रम है, बल्कि ''Z'' पर मनमाने ढंग से दिया गया कुल क्रम है जो उपअंतराल सांस्थितिकी उत्पन्न करता है) के बराबर है। निम्नलिखित में, अंतराल संकेतन की व्याख्या < संबंध के सापेक्ष की जानी चाहिए। साथ ही, यदि ''A'' और ''B'' समुच्चय हैं, तो <math> A<B </math> का अर्थ होगा कि ''A'' में प्रत्येक ''a'' और ''B'' में ''b'' के लिए <math> a<b </math>। | |||
माना ''M'' = ''Z'' \ {-1}, इकाई अंतराल है। ''M'' जुड़ा हुआ है। यदि ''m'', ''n'' ∈ ''M'' और ''m'' < -1 < ''n'', तो <math>(-\infty, -1)</math> और <math>(-1, \infty)</math> ''M'' को अलग करते हैं, जो विरोधाभास है। समान तर्कों के अनुसार, ''M'' अपने आप में सघन है और < के संबंध में इसमें कोई अंतराल नहीं है। इस प्रकार, ''M'' < {-1} or {-1} < ''M''। व्यापकता की हानि के बिना मान लें कि {-1} < ''M। चूँकि Z में {-1} विवृत है, M में कुछ बिंदु p है जिससे अंतराल (-1, p) खाली है। चूँकि {-1} < M, हम जानते हैं कि -1 Z का एकमात्र तत्व है जो p से कम है, इसलिए p, M का न्यूनतम है। फिर M \ {p} = A ∪ B, जहां A और B क्रमशः वास्तविक रेखा (0,p) और (p,1) के अंतराल द्वारा दिए गए M के गैर-रिक्त विवृत और असंयुक्त उपसमुच्चय हैं। ध्यान दें कि A और B की सीमाएँ दोनों p की एकात्मक हैं। A में व्यापकता हानि बिना a और b में B को ऐसे मान लें कि a<b, चूंकि M में कोई अंतराल नहीं है और यह सघन है, अंतराल (a,b) (कोई A के तत्वों x के समुच्चय का सर्वोच्च मान इस प्रकार ले सकता है कि [a,x] A में है) में A और B के बीच एक सीमांत बिंदु है। यह एक विरोधाभास है, क्योंकि एकमात्र सीमा पूरी तरह से a अंतर्गत है।'' | |||
==बाएँ और दाएँ क्रम की टोपोलॉजी== | ==बाएँ और दाएँ क्रम की टोपोलॉजी== |
Revision as of 19:27, 10 July 2023
गणित में, क्रम सांस्थितिकी एक निश्चित सांस्थितिकी है जिसे किसी भी पूर्णतः क्रमित समुच्चय पर परिभाषित किया जा सकता है। यह वास्तविक संख्याओं की सांस्थितिकी का मनमाने ढंग से पूर्णतः क्रमबद्ध समुच्चयों का प्राकृतिक सामान्यीकरण है।
यदि X एक पूर्णतः क्रमित समुच्चय है, तो X पर क्रम सांस्थितिकी "विवृत अर्धरखाओं" के उप आधार द्वारा उत्पन्न होती है।
X में सभी a, b के लिए। बशर्ते कि X में कम से कम दो तत्व हों, यह विवृत अंतराल कहने के बराबर है
उपरोक्त अर्धरेखाओं के साथ मिलकर क्रम सांस्थितिकी के लिए आधार बनता है। X में विवृत समुच्चय वे समुच्चय हैं जो (संभवतः अनंत रूप से कई) ऐसे विवृत अंतराल और अर्धरेखाओं का एक समुच्च हैं। सांस्थितिक अंतराल X को क्रम करने योग्य या रैखिक रूप से ऑर्डर करने योग्य कहा जाता है[1] यदि उसके तत्वों पर कुल क्रम उपस्थित होता है जैसे कि उस क्रम से प्रेरित क्रम सांस्थितिकी और X पर दी गई सांस्थितिकी मेल खाती है। क्रम सांस्थितिकी X को पूरी तरह से सामान्य हॉसडॉर्फ़ अंतराल में बदल देती है।
R, Q, Z और N पर मानक सांस्थितिकी क्रम सांस्थितिकी हैं।
प्रेरित क्रम सांस्थितिकी
यदि Y, X का उपसमुच्चय है, X पूर्णतया क्रमित समुच्चय है, तो Y को X से कुल क्रम प्राप्त होता है। इसलिए समुच्चय Y में क्रम सांस्थितिकी, प्रेरित क्रम सांस्थितिकी है। X के उपसमुच्चय के रूप में, Y में भी एक उपअंतराल सांस्थितिकी है। उपअंतराल सांस्थितिकी सदैव कम से कम प्रेरित क्रम सांस्थितिकी जितनी ही अच्छी होती है, लेकिन वे सामान्य तौर पर समान नहीं होती हैं।
उदाहरण के लिए, परिमेय में उपसमुच्चय Y = {–1} ∪ {1/n}n∈N पर विचार करें। उपअंतराल सांस्थितिकी के तहत, एकल समुच्चय {–1} Y में विवृत है, लेकिन प्रेरित क्रम सांस्थितिकी के तहत, -1 वाले किसी भी विवृत समुच्चय में अंतराल के सभी लेकिन सीमित रूप से कई सदस्य सम्मिलत होने चाहिए।
रैखिक रूप से क्रमित अंतराल के उप-अंतराल का उदाहरण जिसकी सांस्थितिकी क्रम सांस्थितिकी नहीं है
यद्यपि उपरोक्त अनुभाग में Y = {–1} ∪ {1/n}n∈N की उप-अंतराल सांस्थितिकी को Y पर प्रेरित क्रम द्वारा उत्पन्न नहीं किया गया है, फिर भी यह Y पर एक क्रम सांस्थितिकी है वास्तव में, उपअंतराल सांस्थितिकी में प्रत्येक बिंदु पृथक (अर्थात, एकल {y} Y में प्रत्येक y के लिए Y में विवृत है) है, इसलिए उप-अंतराल सांस्थितिकी Y पर (वह सांस्थितिकी जिसमें Y का प्रत्येक उपसमुच्चय विवृत समुच्चय है) असतत सांस्थितिकी है, और किसी भी समुच्चय पर असतत सांस्थितिकी क्रम सांस्थितिकी है। Y पर कुल क्रम को परिभाषित करने के लिए जो Y पर असतत सांस्थितिकी उत्पन्न करता है, केवल -1 को Y का सबसे बड़ा तत्व परिभाषित करके Y पर प्रेरित क्रम को संशोधित करें और अन्यथा अन्य बिंदुओं के लिए समान क्रम रखें, ताकि इस नए क्रम में (इसे <1 कहें) हमारे पास सभी n ∈ N के लिए 1/n <1 –1 है। फिर, <1 द्वारा उत्पन्न Y पर क्रम सांस्थितिकी में, Y का प्रत्येक बिंदु Y में पृथक होता है।
हम यहां रैखिक रूप से क्रमित सांस्थितिक अंतराल X के उपसमुच्चय Z को इस प्रकार परिभाषित करना चाहते हैं कि Z पर कोई भी कुल क्रम Z पर उपअंतराल सांस्थितिकी उत्पन्न नहीं करता है, ताकि उपअंतराल सांस्थितिकी क्रम सांस्थितिक न हो, भले ही यह उस अंतराल की उपअंतराल सांस्थितिकी हो, जिसकी सांस्थितिकी क्रम सांस्थितिकी है।
मान लीजिए वास्तविक रेखा में है। पहले जैसा ही तर्क दिखाता है कि Z पर उपअंतराल सांस्थितिकी Z पर प्रेरित क्रम सांस्थितिकी के बराबर नहीं है, लेकिन कोई यह दिखा सकता है कि Z पर उपअंतराल सांस्थितिकी Z पर किसी भी क्रम सांस्थितिकी के बराबर नहीं हो सकती है।
तर्क इस प्रकार है। विरोधाभास के माध्यम से मान लीजिए कि Z पर कुछ दृढ़ कुल क्रम < है, जैसे कि < द्वारा उत्पन्न क्रम सांस्थितिकी Z पर उपअंतराल सांस्थितिकी (ध्यान दें कि हम यह नहीं मान रहे हैं कि < Z पर प्रेरित क्रम है, बल्कि Z पर मनमाने ढंग से दिया गया कुल क्रम है जो उपअंतराल सांस्थितिकी उत्पन्न करता है) के बराबर है। निम्नलिखित में, अंतराल संकेतन की व्याख्या < संबंध के सापेक्ष की जानी चाहिए। साथ ही, यदि A और B समुच्चय हैं, तो का अर्थ होगा कि A में प्रत्येक a और B में b के लिए ।
माना M = Z \ {-1}, इकाई अंतराल है। M जुड़ा हुआ है। यदि m, n ∈ M और m < -1 < n, तो और M को अलग करते हैं, जो विरोधाभास है। समान तर्कों के अनुसार, M अपने आप में सघन है और < के संबंध में इसमें कोई अंतराल नहीं है। इस प्रकार, M < {-1} or {-1} < M। व्यापकता की हानि के बिना मान लें कि {-1} < M। चूँकि Z में {-1} विवृत है, M में कुछ बिंदु p है जिससे अंतराल (-1, p) खाली है। चूँकि {-1} < M, हम जानते हैं कि -1 Z का एकमात्र तत्व है जो p से कम है, इसलिए p, M का न्यूनतम है। फिर M \ {p} = A ∪ B, जहां A और B क्रमशः वास्तविक रेखा (0,p) और (p,1) के अंतराल द्वारा दिए गए M के गैर-रिक्त विवृत और असंयुक्त उपसमुच्चय हैं। ध्यान दें कि A और B की सीमाएँ दोनों p की एकात्मक हैं। A में व्यापकता हानि बिना a और b में B को ऐसे मान लें कि a<b, चूंकि M में कोई अंतराल नहीं है और यह सघन है, अंतराल (a,b) (कोई A के तत्वों x के समुच्चय का सर्वोच्च मान इस प्रकार ले सकता है कि [a,x] A में है) में A और B के बीच एक सीमांत बिंदु है। यह एक विरोधाभास है, क्योंकि एकमात्र सीमा पूरी तरह से a अंतर्गत है।
बाएँ और दाएँ क्रम की टोपोलॉजी
ऑर्डर टोपोलॉजी के कई प्रकार दिए जा सकते हैं:
- सही क्रम टोपोलॉजी[2] एक्स पर एक टोपोलॉजी है जिसका आधार (टोपोलॉजी) फॉर्म के सभी अंतराल हैं , सेट एक्स के साथ।
- एक्स पर 'लेफ्ट ऑर्डर टोपोलॉजी' वह टोपोलॉजी है जिसका आधार फॉर्म के सभी अंतराल हैं , सेट एक्स के साथ।
सामान्य टोपोलॉजी में प्रतिउदाहरण देने के लिए बाएँ और दाएँ क्रम की टोपोलॉजी का उपयोग किया जा सकता है। उदाहरण के लिए, एक बंधे हुए सेट पर बाएँ या दाएँ क्रम की टोपोलॉजी एक सघन स्थान का उदाहरण प्रदान करती है जो हॉसडॉर्फ नहीं है।
बायाँ क्रम टोपोलॉजी एक मानक टोपोलॉजी है जिसका उपयोग बूलियन बीजगणित (संरचना) पर कई सेट-सैद्धांतिक उद्देश्यों के लिए किया जाता है।[clarification needed]
सामान्य स्थान
किसी भी क्रमसूचक संख्या λ के लिए कोई क्रमसूचक संख्याओं के रिक्त स्थान पर विचार कर सकता है
प्राकृतिक क्रम टोपोलॉजी के साथ। इन स्थानों को क्रमसूचक स्थान कहा जाता है। (ध्यान दें कि क्रमिक संख्याओं के सामान्य सेट-सैद्धांतिक निर्माण में हमारे पास λ = [0,λ) और λ + 1 = [0,λ] होता है)। जाहिर है, ये स्थान अधिकतर तब रुचिकर होते हैं जब λ एक अनंत क्रमसूचक होता है; अन्यथा (परिमित अध्यादेशों के लिए), ऑर्डर टोपोलॉजी केवल असतत टोपोलॉजी है।
जब λ = ω (पहला अनंत क्रमसूचक), स्थान [0,ω) सामान्य (अभी भी असतत) टोपोलॉजी के साथ सिर्फ एन है, जबकि [0,ω] एन का एलेक्जेंडरॉफ_एक्सटेंशन|एक-बिंदु कॉम्पैक्टिफिकेशन है .
विशेष रुचि वह मामला है जब λ = ω1, सभी गणनीय क्रमसूचकों का समुच्चय, और पहला बेशुमार क्रमवाचक। तत्व ω1 उपसमुच्चय [0,ω का एक सीमा बिंदु है1) भले ही [0,ω में तत्वों का कोई अनुक्रम (गणित) नहीं है1) में तत्व ω है1 इसकी सीमा के रूप में. विशेष रूप से, [0,ω1] प्रथम-गणनीय स्थान नहीं है|प्रथम-गणनीय। उपस्थान [0,ω1) हालाँकि, प्रथम-गणनीय है, क्योंकि [0,ω में एकमात्र बिंदु है1] बिना गणनीय स्थानीय आधार के ω है1. कुछ और संपत्तियों में शामिल हैं
- न तो [0,ω1) या [0,ω1] वियोज्य स्थान या द्वितीय-गणनीय है
- [0,ω1] सघन स्थान है, जबकि [0,ω1) अनुक्रमिक रूप क्रमिक रूप से संकुचित स्थान और गणनीय रूप से सघन स्थान है, लेकिन कॉम्पैक्ट या परा-सुसंहत नहीं है
टोपोलॉजी और ऑर्डिनल्स
टोपोलॉजिकल स्पेस के रूप में ऑर्डिनल्स
किसी भी क्रमसूचक संख्या कुल ऑर्डर टोपोलॉजी के साथ संपन्न करके एक टोपोलॉजिकल स्पेस में बनाया जा सकता है (चूँकि, अच्छी तरह से क्रमबद्ध होने के कारण, एक क्रमसूचक विशेष रूप से कुल क्रम में होता है): इसके विपरीत संकेत के अभाव में, यह हमेशा ऑर्डर टोपोलॉजी होता है इसका मतलब तब होता है जब एक ऑर्डिनल को एक टोपोलॉजिकल स्पेस के रूप में माना जाता है। (ध्यान दें कि यदि हम एक उचित वर्ग को टोपोलॉजिकल स्पेस के रूप में स्वीकार करने के इच्छुक हैं, तो सभी ऑर्डिनल्स का वर्ग भी ऑर्डर टोपोलॉजी के लिए एक टोपोलॉजिकल स्पेस है।)
किसी ऑर्डिनल α के सीमा बिंदुओं का सेट बिल्कुल α से कम सीमा वाले ऑर्डिनल्स का सेट होता है। α से कम उत्तराधिकारी क्रमसूचक (और शून्य) α में पृथक बिंदु हैं। विशेष रूप से, परिमित क्रमसूचक और ω असतत स्थान टोपोलॉजिकल स्थान हैं, और इससे परे कोई भी क्रमसूचक असतत नहीं है। ऑर्डिनल α एक टोपोलॉजिकल स्पेस के रूप में कॉम्पैक्ट स्पेस है यदि और केवल यदि α एक उत्तराधिकारी ऑर्डिनल है।
एक सीमा क्रमसूचक α के बंद सेट केवल इस अर्थ में बंद सेट हैं कि हमारे पास #बंद किए गए असंबद्ध सेट और वर्ग हैं, अर्थात्, जिनमें एक सीमा क्रमसूचक होता है जब भी उनमें इसके नीचे सभी पर्याप्त रूप से बड़े अध्यादेश होते हैं।
कोई भी क्रमसूचक, निश्चित रूप से, किसी भी आगे के क्रमसूचक का एक खुला उपसमुच्चय है। हम निम्नलिखित आगमनात्मक तरीके से ऑर्डिनल्स पर टोपोलॉजी को भी परिभाषित कर सकते हैं: 0 खाली टोपोलॉजिकल स्पेस है, α+1 को कॉम्पेक्टिफिकेशन (गणित) | α का एक-बिंदु कॉम्पेक्टिफिकेशन लेकर प्राप्त किया जाता है, और δ के लिए एक सीमा ऑर्डिनल, δ प्रत्यक्ष सीमा टोपोलॉजी से सुसज्जित है। ध्यान दें कि यदि α एक उत्तराधिकारी क्रमसूचक है, तो α सघन है, इस स्थिति में इसका एक-बिंदु संघनन α+1 α और एक बिंदु का असंयुक्त संघ है।
टोपोलॉजिकल स्पेस के रूप में, सभी ऑर्डिनल्स हॉसडॉर्फ स्पेस और यहां तक कि सामान्य स्पेस भी हैं। वे पूरी तरह से अलग किए गए स्थान (जुड़े हुए घटक बिंदु हैं), बिखरे हुए स्थान (प्रत्येक गैर-रिक्त उपस्थान में एक अलग बिंदु होता है; इस मामले में, बस सबसे छोटा तत्व लें), शून्य-आयामी स्थान | शून्य-आयामी (टोपोलॉजी में एक है) क्लोपेन आधार (टोपोलॉजी): यहां, क्लोपेन अंतराल (β,γ'+1)=[β+' के मिलन के रूप में एक खुला अंतराल (β,γ) लिखें 1,γ'] के लिए γ'<γ). हालाँकि, वे सामान्य रूप से अत्यधिक असंबद्ध स्थान नहीं हैं (वहाँ खुले सेट हैं, उदाहरण के लिए ω से सम संख्याएँ, जिनका समापन खुला नहीं है)।
टोपोलॉजिकल स्पेस ω1 और इसके उत्तराधिकारी ω1+1 का उपयोग अक्सर गैर-गणनीय टोपोलॉजिकल रिक्त स्थान के पाठ्य-पुस्तक उदाहरण के रूप में किया जाता है। उदाहरण के लिए, टोपोलॉजिकल स्पेस में ω1+1, तत्व ω1 उपसमुच्चय ω के समापन में है1 भले ही ω में तत्वों का कोई क्रम नहीं है1 इसमें ω तत्व है1 इसकी सीमा के रूप में: ω में एक तत्व1 एक गणनीय समुच्चय है; ऐसे समुच्चयों के किसी भी क्रम के लिए, इन समुच्चयों का मिलन अनगिनत गणनीय समुच्चयों का मिलन है, इसलिए फिर भी गणनीय है; यह संघ अनुक्रम के तत्वों की ऊपरी सीमा है, और इसलिए अनुक्रम की सीमा, यदि इसमें कोई है।
अंतरिक्ष ω1 प्रथम-गणनीय स्थान है|प्रथम-गणनीय, लेकिन द्वितीय-गणनीय स्थान नहीं|द्वितीय-गणनीय, और ω1कॉम्पैक्ट स्पेस होने के बावजूद +1 में इन दोनों में से कोई भी गुण नहीं है। यह भी ध्यान देने योग्य है कि ω से कोई भी सतत फलन1 से R (वास्तविक रेखा) अंततः स्थिर है: इसलिए ω का कॉम्पेक्टिफिकेशन (गणित)|स्टोन-सेच कॉम्पेक्टिफिकेशन1 ω है1+1, ठीक इसके एक-बिंदु संघनन की तरह (ω के बिल्कुल विपरीत, जिसका स्टोन-सेच संघनन ω से बहुत बड़ा है)।
सामान्य-अनुक्रमित अनुक्रम
यदि α एक सीमा क्रमसूचक है और X एक समुच्चय है, तो X के तत्वों का α-अनुक्रमित अनुक्रम केवल α से अनुक्रम की अवधारणा. एक साधारण अनुक्रम मामले α = ω से मेल खाता है।
यदि <α ऐसा कि xι सभी ι≥β के लिए U में है।
टोपोलॉजी में सीमाएं निर्धारित करने के लिए सामान्य-अनुक्रमित अनुक्रम सामान्य (ω-अनुक्रमित) अनुक्रमों से अधिक शक्तिशाली हैं: उदाहरण के लिए, ω1 (क्रमसूचक संख्या#कार्डिनल का प्रारंभिक क्रमसूचक|ओमेगा-वन, सभी गणनीय क्रमसूचक संख्याओं का समुच्चय, और सबसे छोटी बेशुमार क्रमसूचक संख्या), ω का एक सीमा बिंदु है1+1 (क्योंकि यह एक सीमा क्रमसूचक है), और, वास्तव में, यह ω की सीमा है1-अनुक्रमित अनुक्रम जो ω से कम किसी भी क्रमसूचक को मैप करता है1 स्वयं के लिए: हालाँकि, यह ω में किसी सामान्य (ω-अनुक्रमित) अनुक्रम की सीमा नहीं है1, चूँकि ऐसी कोई भी सीमा उसके तत्वों के मिलन से कम या उसके बराबर होती है, जो गणनीय समुच्चयों का गणनीय संघ है, इसलिए स्वयं गणनीय है।
हालाँकि, सामान्य रूप से नेट (या फ़िल्टर (गणित)) को बदलने के लिए क्रमिक-अनुक्रमित अनुक्रम पर्याप्त शक्तिशाली नहीं हैं: उदाहरण के लिए, टाइकोनोफ़ प्लैंक (उत्पाद स्थान) पर ), कोने का बिंदु खुले उपसमुच्चय का एक सीमा बिंदु है (यह समापन में है)। , लेकिन यह क्रमिक-अनुक्रमित अनुक्रम की सीमा नहीं है।
यह भी देखें
- टोपोलॉजी की सूची
- निचली सीमा टोपोलॉजी
- लंबी लाइन (टोपोलॉजी)
- रैखिक सातत्य
- ऑर्डर टोपोलॉजी (कार्यात्मक विश्लेषण)
- आंशिक रूप से ऑर्डर किया गया स्थान
टिप्पणियाँ
- ↑ Lynn, I. L. (1962). "रैखिक रूप से क्रमबद्ध स्थान". Proceedings of the American Mathematical Society. 13 (3): 454–456. doi:10.1090/S0002-9939-1962-0138089-6.
- ↑ Steen & Seebach, p. 74
संदर्भ
- Steen, Lynn A. and Seebach, J. Arthur Jr.; Counterexamples in Topology, Holt, Rinehart and Winston (1970). ISBN 0-03-079485-4.
- Stephen Willard, General Topology, (1970) Addison-Wesley Publishing Company, Reading Massachusetts.
- This article incorporates material from Order topology on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.