सामान्यीकृत सामान्य वितरण: Difference between revisions

From Vigyanwiki
Line 32: Line 32:
'''सममित सामान्यीकृत सामान्य बंटन''', जिसे '''चरघातांकी घातीय बंटन''' या सामान्यीकृत त्रुटि बंटन के रूप में भी जाना जाता है, सममित बंटन का एक पैरामीट्रिक कुल है। इसमें सभी सामान्य और [[लाप्लास वितरण|लाप्लास बंटन]] शामिल हैं, और सीमित मामलों के रूप में, इसमें वास्तविक रेखा के सीमित अंतराल पर सभी [[निरंतर समान वितरण|निरंतर समान बंटन]] शामिल हैं।
'''सममित सामान्यीकृत सामान्य बंटन''', जिसे '''चरघातांकी घातीय बंटन''' या सामान्यीकृत त्रुटि बंटन के रूप में भी जाना जाता है, सममित बंटन का एक पैरामीट्रिक कुल है। इसमें सभी सामान्य और [[लाप्लास वितरण|लाप्लास बंटन]] शामिल हैं, और सीमित मामलों के रूप में, इसमें वास्तविक रेखा के सीमित अंतराल पर सभी [[निरंतर समान वितरण|निरंतर समान बंटन]] शामिल हैं।


इस परिवार में सामान्य वितरण शामिल है जब <math>\textstyle\beta=2</math> (माध्य <math>\textstyle\mu</math> और भिन्नता <math>\textstyle \frac{\alpha^2}{2}</math>} के साथ) और इसमें लाप्लास वितरण शामिल है जब <math>\textstyle\beta=1</math>। <math>\textstyle\beta\rightarrow\infty</math> के रूप में, घनत्व <math>\textstyle (\mu-\alpha,\mu+\alpha)</math> पर बिंदुवार एक समान घनत्व में परिवर्तित हो जाता है।
इस कुल में सामान्य बंटन शामिल है जब <math>\textstyle\beta=2</math> (माध्य <math>\textstyle\mu</math> और भिन्नता <math>\textstyle \frac{\alpha^2}{2}</math>} के साथ) और इसमें लाप्लास बंटन शामिल है जब <math>\textstyle\beta=1</math>। <math>\textstyle\beta\rightarrow\infty</math> के रूप में, घनत्व <math>\textstyle (\mu-\alpha,\mu+\alpha)</math> पर बिंदुवार एक समान घनत्व में परिवर्तित हो जाता है।


यह परिवार ऐसी पट की अनुमति देता है जो या तो सामान्य से अधिक भारी होती हैं (जब <math>\beta<2</math>) या सामान्य से हल्की होती हैं (जब <math>\beta>2</math>)। यह सामान्य (<math>\textstyle\beta=2</math>) से एकसमान घनत्व तक फैले सममित, प्लैटीकर्टिक घनत्वों की सातत्यता को पैरामीट्रिज करने का एक उपयोगी तरीका है। (<math>\textstyle\beta=\infty</math>), और लाप्लास (<math>\textstyle\beta=1</math>) से सामान्य घनत्व ( <math>\textstyle\beta=2</math>) तक फैले सममित, लेप्टोकर्टिक घनत्वों की एक निरंतरता। आकार पैरामीटर <math>\beta</math> पट के अतिरिक्त शिखरता को भी नियंत्रित करता है।
यह कुल ऐसी पट की अनुमति देता है जो या तो सामान्य से अधिक भारी होती हैं (जब <math>\beta<2</math>) या सामान्य से हल्की होती हैं (जब <math>\beta>2</math>)। यह सामान्य (<math>\textstyle\beta=2</math>) से एकसमान घनत्व तक फैले सममित, प्लैटीकर्टिक घनत्वों की सातत्यता को पैरामीट्रिज करने का एक उपयोगी तरीका है। (<math>\textstyle\beta=\infty</math>), और लाप्लास (<math>\textstyle\beta=1</math>) से सामान्य घनत्व ( <math>\textstyle\beta=2</math>) तक फैले सममित, लेप्टोकर्टिक घनत्वों की एक निरंतरता। आकार पैरामीटर <math>\beta</math> पट के अतिरिक्त शिखरता को भी नियंत्रित करता है।


===पैरामीटर अनुमान===
===पैरामीटर अनुमान===
Line 41: Line 41:
{{cite journal |last= Domínguez-Molina |first= J. Armando|author2=González-Farías, Graciela|author2-link=Graciela González Farías |author3=Rodríguez-Dagnino, Ramón M. | title= A practical procedure to estimate the shape parameter in the generalized Gaussian distribution | url= http://www.cimat.mx/reportes/enlinea/I-01-18_eng.pdf |access-date=2009-03-03 }}</ref>
{{cite journal |last= Domínguez-Molina |first= J. Armando|author2=González-Farías, Graciela|author2-link=Graciela González Farías |author3=Rodríguez-Dagnino, Ramón M. | title= A practical procedure to estimate the shape parameter in the generalized Gaussian distribution | url= http://www.cimat.mx/reportes/enlinea/I-01-18_eng.pdf |access-date=2009-03-03 }}</ref>


सामान्यीकृत सामान्य लॉग-संभावना फ़ंक्शन में अनंत रूप से कई निरंतर व्युत्पन्न होते हैं (यानी यह सुचारू कार्यों के वर्ग C∞ से संबंधित होता है) केवल तभी जब β एक सकारात्मक, सम पूर्णांक है। अन्यथा, फ़ंक्शन में <math>\textstyle\lfloor \beta \rfloor</math>निरंतर डेरिवेटिव हैं। परिणामस्वरूप, <math>\beta</math> की अधिकतम संभावना अनुमानों की स्थिरता और स्पर्शोन्मुख सामान्यता के लिए मानक परिणाम केवल तभी लागू होते  जब <math>\textstyle\beta\ge 2</math> हैं ।
सामान्यीकृत सामान्य लॉग-संभावना फ़ंक्शन में अनंत रूप से कई निरंतर व्युत्पन्न होते हैं (यानी यह सुचारू कार्यों के वर्ग C∞ से संबंधित होता है) केवल तभी जब β एक धनात्मक, सम पूर्णांक है। अन्यथा, फ़ंक्शन में <math>\textstyle\lfloor \beta \rfloor</math>निरंतर डेरिवेटिव हैं। परिणामस्वरूप, <math>\beta</math> की अधिकतम संभावना अनुमानों की स्थिरता और स्पर्शोन्मुख सामान्यता के लिए मानक परिणाम केवल तभी लागू होते  जब <math>\textstyle\beta\ge 2</math> हैं ।


==== अधिकतम संभावना अनुमानक ====
==== अधिकतम संभावना अनुमानक ====
अनुमानित अधिकतम संभावना पद्धति को अपनाकर सामान्यीकृत सामान्य वितरण को फिट करना संभव है।<ref>{{cite journal |last= Varanasi|first= M.K.|author2=Aazhang B. |year= 1989|title= पैरामीट्रिक सामान्यीकृत गाऊसी घनत्व अनुमान|journal= [[J. Acoust. Soc. Am.]] |volume= 86|issue= 4|pages= 1404&ndash;1415|doi= 10.1121/1.398700|bibcode= 1989ASAJ...86.1404V}}</ref><ref>{{cite journal |last= Do |first= M.N.|author2=Vetterli, M. |date=February 2002|title= सामान्यीकृत गाऊसी घनत्व और कुल्बैक-लीबलर दूरी का उपयोग करके वेवलेट-आधारित बनावट पुनर्प्राप्ति|journal= Transaction on Image Processing|volume= 11|issue= 2|pages= 146&ndash;158|url=  http://infoscience.epfl.ch/record/33839|doi= 10.1109/83.982822|pmid= 18244620|bibcode= 2002ITIP...11..146D}}</ref> <math>\mu</math> को आरंभ में नमूना प्रथम क्षण <math>m_1</math> पर सेट करने के साथ, <math>\textstyle\beta</math> का अनुमान न्यूटन-रेफसन पुनरावृत्त प्रक्रिया का उपयोग करके किया जाता है, जो <math>\textstyle\beta=\textstyle\beta_0</math>के प्रारंभिक अनुमान से शुरू होता है,
अनुमानित अधिकतम संभावना पद्धति को अपनाकर सामान्यीकृत सामान्य बंटन को फिट करना संभव है।<ref>{{cite journal |last= Varanasi|first= M.K.|author2=Aazhang B. |year= 1989|title= पैरामीट्रिक सामान्यीकृत गाऊसी घनत्व अनुमान|journal= [[J. Acoust. Soc. Am.]] |volume= 86|issue= 4|pages= 1404&ndash;1415|doi= 10.1121/1.398700|bibcode= 1989ASAJ...86.1404V}}</ref><ref>{{cite journal |last= Do |first= M.N.|author2=Vetterli, M. |date=February 2002|title= सामान्यीकृत गाऊसी घनत्व और कुल्बैक-लीबलर दूरी का उपयोग करके वेवलेट-आधारित बनावट पुनर्प्राप्ति|journal= Transaction on Image Processing|volume= 11|issue= 2|pages= 146&ndash;158|url=  http://infoscience.epfl.ch/record/33839|doi= 10.1109/83.982822|pmid= 18244620|bibcode= 2002ITIP...11..146D}}</ref> <math>\mu</math> को आरंभ में नमूना प्रथम क्षण <math>m_1</math> पर सेट करने के साथ, <math>\textstyle\beta</math> का अनुमान न्यूटन-रेफसन पुनरावृत्त प्रक्रिया का उपयोग करके किया जाता है, जो <math>\textstyle\beta=\textstyle\beta_0</math>के प्रारंभिक अनुमान से शुरू होता है,
:<math>\beta _0 = \frac{m_1}{\sqrt{m_2}},</math>
:<math>\beta _0 = \frac{m_1}{\sqrt{m_2}},</math>
जहाँ
जहाँ
Line 74: Line 74:
===अनुप्रयोग===
===अनुप्रयोग===


सममित सामान्यीकृत सामान्य बंटन का उपयोग मॉडलिंग में किया गया है जब माध्य और पूंछ व्यवहार के आसपास मूल्यों की एकाग्रता विशेष रुचि की होती है।<ref>
सममित सामान्यीकृत सामान्य बंटन का उपयोग मॉडलिंग में किया गया है जब माध्य और पट व्यवहार के आसपास मूल्यों की एकाग्रता विशेष रुचि रखती है।<ref>
{{cite journal
{{cite journal
  |last        = Liang
  |last        = Liang
Line 92: Line 92:
  |archive-date = 2007-10-09
  |archive-date = 2007-10-09
}}</ref><ref>
}}</ref><ref>
{{cite book |title= Bayesian Inference in Statistical Analysis |last= Box |first= George E. P.|author-link= George E. P. Box |author2-link=George Tiao|author2=Tiao, George C. |year= 1992 |publisher= Wiley|location= New York|isbn= 978-0-471-57428-6}}</ref> यदि ध्यान सामान्यता से अन्य विचलनों पर है तो बंटन के अन्य कुलों का उपयोग किया जा सकता है। यदि बंटन का [[सममित वितरण|सममित बंटन]] मुख्य रुचि है, तो [[तिरछा सामान्य वितरण|तिरछा सामान्य बंटन]] कुल या नीचे चर्चा किए गए सामान्यीकृत सामान्य कुल के असममित संस्करण का उपयोग किया जा सकता है। यदि पूंछ व्यवहार मुख्य रुचि है, तो [[छात्र टी वितरण|छात्र टी बंटन]] कुल का उपयोग किया जा सकता है, जो सामान्य बंटन का अनुमान लगाता है क्योंकि स्वतंत्रता की डिग्री अनंत तक बढ़ती है। टी बंटन, इस सामान्यीकृत सामान्य बंटन के विपरीत, मूल पर एक [[पुच्छ (विलक्षणता)]] प्राप्त किए बिना सामान्य पूंछ से अधिक भारी हो जाता है।
{{cite book |title= Bayesian Inference in Statistical Analysis |last= Box |first= George E. P.|author-link= George E. P. Box |author2-link=George Tiao|author2=Tiao, George C. |year= 1992 |publisher= Wiley|location= New York|isbn= 978-0-471-57428-6}}</ref> यदि सामान्यता से अन्य विचलनों पर ध्यान केंद्रित किया जाता है तो बंटन के अन्य कुलों का उपयोग किया जा सकता है। यदि बंटन की समरूपता मुख्य रुचि है, तो नीचे चर्चा की गई सामान्यीकृत सामान्य कुल के विषम सामान्य कुल या असममित संस्करण का उपयोग किया जा सकता है। यदि पट का व्यवहार मुख्य रुचि है, तो छात्र t कुल का उपयोग किया जा सकता है, जो स्वतंत्रता की डिग्री अनंत तक बढ़ने पर सामान्य बंटन का अनुमान लगाता है। t बंटन, इस सामान्यीकृत सामान्य बंटन के विपरीत, मूल पर एक पुच्छ प्राप्त किए बिना सामान्य पट की तुलना में भारी हो जाता है।


===गुण===
===गुण===
Line 98: Line 98:
==== क्षण ====
==== क्षण ====


होने देना <math> X_\beta </math> आकार का शून्य माध्य सामान्यीकृत गाऊसी बंटन हो <math> \beta </math> और स्केलिंग पैरामीटर <math> \alpha </math> . के क्षण <math> X_\beta </math> अस्तित्व में हैं और −1 से अधिक किसी भी k के लिए परिमित हैं। किसी भी गैर-नकारात्मक पूर्णांक k के लिए, सादे केंद्रीय क्षण हैं<ref name="Nadarajah" />
मान लीजिए कि <math> X_\beta </math> आकृति <math> \beta </math> और स्केलिंग पैरामीटर <math> \alpha </math> का शून्य माध्य सामान्यीकृत गाऊसी बंटन है। <math> X_\beta </math> के परिमित मौजूद हैं और −1 से बड़े किसी भी k के लिए सीमित हैं। किसी भी गैर-ऋणात्मक पूर्णांक k के लिए, सादे केंद्रीय क्षण हैं<ref name="Nadarajah" />


: <math>
: <math>
Line 107: Line 107:
       \end{cases}
       \end{cases}
   </math>
   </math>
==== स्थैतिक गणना बंटन से संपर्क ====


 
स्थिर गिनती बंटन के दृष्टिकोण से, <math> \beta </math> को लेवी की स्थिरता पैरामीटर के रूप में माना जा सकता है। इस बंटन को कर्नेल घनत्व के अभिन्न अंग में विघटित किया जा सकता है जहां कर्नेल या तो लाप्लास बंटन या गॉसियन [[गाऊसी वितरण|बंटन]] है:
==== स्थिर गणना बंटन से कनेक्शन ====
 
स्थिर गणना बंटन के दृष्टिकोण से, <math> \beta </math> इसे लेवी के स्थिरता पैरामीटर के रूप में माना जा सकता है। इस बंटन को कर्नेल घनत्व के एक अभिन्न अंग में विघटित किया जा सकता है जहां कर्नेल या तो लाप्लास बंटन या [[गाऊसी वितरण|गाऊसी बंटन]] है:


: <math>
: <math>
Line 124: Line 122:
       \end{cases}
       \end{cases}
   </math>
   </math>
जहाँ <math>\mathfrak{N}_\beta(\nu)</math> स्थिर गिनती बंटन है और <math>V_{\beta}(s)</math> Stable_count_distribution#Stable_Vol_Distribution है।
जहां <math>\mathfrak{N}_\beta(\nu)</math> स्थिर गणना बंटन है और <math>V_{\beta}(s)</math> स्थिर वोल बंटन है।


====[[सकारात्मक-निश्चित कार्य]]ों से संबंध ====
====धनात्मक-निश्चित फलनों से संबंध ====


सममित सामान्यीकृत सामान्य बंटन का संभाव्यता घनत्व फ़ंक्शन एक सकारात्मक-निश्चित फ़ंक्शन है  <math>\beta \in (0,2]</math>.<ref>
सममित सामान्यीकृत सामान्य बंटन का संभाव्यता घनत्व फ़ंक्शन एक धनात्मक-निश्चित फ़ंक्शन <math>\beta \in (0,2]</math> है  .<ref>
{{cite journal
{{cite journal
  |last        = Dytso
  |last        = Dytso
Line 156: Line 154:
  |doi=10.1215/s0012-7094-37-00360-0
  |doi=10.1215/s0012-7094-37-00360-0
}}</ref>
}}</ref>
==== अनंत विभाज्यता ====
==== अनंत विभाज्यता ====
सममित सामान्यीकृत गॉसियन बंटन एक [[असीम रूप से विभाज्य वितरण|असीम रूप से विभाज्य बंटन]] है यदि और केवल यदि <math> \beta \in (0,1] \cup \{ 2\} </math>.<ref>
सममित सामान्यीकृत गॉसियन बंटन एक [[असीम रूप से विभाज्य वितरण|असीम रूप से विभाज्य बंटन]] है यदि और केवल यदि <math> \beta \in (0,1] \cup \{ 2\} </math>.<ref>
Line 175: Line 171:
|doi-access= free
|doi-access= free
  }}</ref>
  }}</ref>
===सामान्यीकरण ===
===सामान्यीकरण ===
बहुभिन्नरूपी सामान्यीकृत सामान्य बंटन, यानी का उत्पाद <math>n</math> उसी के साथ घातीय शक्ति बंटन <math>\beta</math> और <math>\alpha</math> पैरामीटर, एकमात्र संभाव्यता घनत्व है जिसे फॉर्म में लिखा जा सकता है <math>p(\mathbf x)=g(\|\mathbf x\|_\beta)</math> और स्वतंत्र सीमांत हैं।<ref>{{cite journal |last= Sinz|first= Fabian|author2=Gerwinn, Sebastian |author3=Bethge, Matthias
बहुभिन्नरूपी सामान्यीकृत सामान्य बंटन, यानी का उत्पाद <math>n</math> उसी के साथ घातीय शक्ति बंटन <math>\beta</math> और <math>\alpha</math> पैरामीटर, एकमात्र संभाव्यता घनत्व है जिसे फॉर्म में लिखा जा सकता है <math>p(\mathbf x)=g(\|\mathbf x\|_\beta)</math> और स्वतंत्र सीमांत हैं।<ref>{{cite journal |last= Sinz|first= Fabian|author2=Gerwinn, Sebastian |author3=Bethge, Matthias
|date=May 2009|title=पी-सामान्यीकृत सामान्य वितरण की विशेषता।|journal=Journal of Multivariate Analysis|volume= 100|issue= 5|pages= 817&ndash;820|doi=10.1016/j.jmva.2008.07.006|doi-access=free}}</ref> [[बहुभिन्नरूपी सामान्य वितरण|बहुभिन्नरूपी सामान्य बंटन]] के विशेष मामले के परिणामों का श्रेय मूल रूप से [[जेम्स क्लर्क मैक्सवेल]] को दिया जाता है।<ref>{{cite journal |last= Kac|first= M.|year= 1939|title=सामान्य वितरण के लक्षण वर्णन पर|journal=American Journal of Mathematics|volume= 61|issue= 3|pages= 726&ndash;728|doi= 10.2307/2371328 |jstor= 2371328}}</ref>
|date=May 2009|title=पी-सामान्यीकृत सामान्य वितरण की विशेषता।|journal=Journal of Multivariate Analysis|volume= 100|issue= 5|pages= 817&ndash;820|doi=10.1016/j.jmva.2008.07.006|doi-access=free}}</ref> [[बहुभिन्नरूपी सामान्य वितरण|बहुभिन्नरूपी सामान्य बंटन]] के विशेष मामले के परिणामों का श्रेय मूल रूप से [[जेम्स क्लर्क मैक्सवेल]] को दिया जाता है।<ref>{{cite journal |last= Kac|first= M.|year= 1939|title=सामान्य वितरण के लक्षण वर्णन पर|journal=American Journal of Mathematics|volume= 61|issue= 3|pages= 726&ndash;728|doi= 10.2307/2371328 |jstor= 2371328}}</ref>
 
==असममित संस्करण==
 
==असममित संस्करण{{anchor|Version 2}}==


{{Probability distribution |
{{Probability distribution |
Line 203: Line 195:
   char      =<!-- to do -->|
   char      =<!-- to do -->|
}}
}}
{{distinguish|Skew normal distribution}}
{{distinguish|सामान्य बंटन विषमता}}


असममित सामान्यीकृत सामान्य बंटन निरंतर संभाव्यता बंटन का एक कुल है जिसमें आकार पैरामीटर का उपयोग विषमता या तिरछापन पेश करने के लिए किया जा सकता है।<ref>Hosking, J.R.M., Wallis, J.R. (1997) ''Regional frequency analysis: an approach based on L-moments'', Cambridge University Press. {{ISBN|0-521-43045-3}}. Section A.8</ref><ref>[http://www.cran.r-project.org/web/packages/lmomco/lmomco.pdf Documentation for the lmomco R package]</ref> जब आकार पैरामीटर शून्य होता है, तो सामान्य बंटन परिणाम होता है। आकार पैरामीटर के सकारात्मक मान दाईं ओर बंधे बाएं-तिरछे बंटन उत्पन्न करते हैं, और आकार पैरामीटर के नकारात्मक मान बाईं ओर बंधे दाएं-तिरछे बंटन उत्पन्न करते हैं। केवल जब आकार पैरामीटर शून्य होता है, तो इस बंटन के लिए घनत्व फ़ंक्शन पूरी वास्तविक रेखा पर सकारात्मक होता है: इस मामले में बंटन एक सामान्य बंटन है, अन्यथा बंटन स्थानांतरित हो जाते हैं और संभवतः [[लॉग-सामान्य वितरण|लॉग-सामान्य बंटन]] उलट जाते हैं।
असममित सामान्यीकृत सामान्य बंटन निरंतर संभाव्यता बंटन का एक कुल है जिसमें आकार पैरामीटर का उपयोग विषमता या तिरछापन पेश करने के लिए किया जा सकता है।<ref>Hosking, J.R.M., Wallis, J.R. (1997) ''Regional frequency analysis: an approach based on L-moments'', Cambridge University Press. {{ISBN|0-521-43045-3}}. Section A.8</ref><ref>[http://www.cran.r-project.org/web/packages/lmomco/lmomco.pdf Documentation for the lmomco R package]</ref> जब आकार पैरामीटर शून्य होता है, तो सामान्य बंटन परिणाम होता है। आकार पैरामीटर के धनात्मक मान दाईं ओर बंधे बाएं-तिरछे बंटन उत्पन्न करते हैं, और आकार पैरामीटर के नकारात्मक मान बाईं ओर बंधे दाएं-तिरछे बंटन उत्पन्न करते हैं। केवल जब आकार पैरामीटर शून्य होता है, तो इस बंटन के लिए घनत्व फ़ंक्शन पूरी वास्तविक रेखा पर धनात्मक होता है: इस मामले में बंटन एक सामान्य बंटन है, अन्यथा बंटन स्थानांतरित हो जाते हैं और संभवतः [[लॉग-सामान्य वितरण|लॉग-सामान्य बंटन]] उलट जाते हैं।


===पैरामीटर अनुमान===
===पैरामीटर अनुमान===
Line 221: Line 213:
वास्तव में परिमित विचरण वाले सभी बंटन सामान्य बंटन से अत्यधिक संबंधित सीमा में होते हैं। स्टूडेंट-टी बंटन, इरविन-हॉल बंटन और [[बेट्स वितरण|बेट्स बंटन]] भी सामान्य बंटन का विस्तार करते हैं, और सीमा में सामान्य बंटन को शामिल करते हैं। इसलिए टाइप 1 के सामान्यीकृत सामान्य बंटन को प्राथमिकता देने का कोई मजबूत कारण नहीं है, उदाहरण के लिए। स्टूडेंट-टी और एक सामान्यीकृत विस्तारित इरविन-हॉल के संयोजन पर - इसमें उदाहरण शामिल होगा। त्रिकोणीय बंटन (जिसे सामान्यीकृत गाऊसी प्रकार 1 द्वारा प्रतिरूपित नहीं किया जा सकता है)।
वास्तव में परिमित विचरण वाले सभी बंटन सामान्य बंटन से अत्यधिक संबंधित सीमा में होते हैं। स्टूडेंट-टी बंटन, इरविन-हॉल बंटन और [[बेट्स वितरण|बेट्स बंटन]] भी सामान्य बंटन का विस्तार करते हैं, और सीमा में सामान्य बंटन को शामिल करते हैं। इसलिए टाइप 1 के सामान्यीकृत सामान्य बंटन को प्राथमिकता देने का कोई मजबूत कारण नहीं है, उदाहरण के लिए। स्टूडेंट-टी और एक सामान्यीकृत विस्तारित इरविन-हॉल के संयोजन पर - इसमें उदाहरण शामिल होगा। त्रिकोणीय बंटन (जिसे सामान्यीकृत गाऊसी प्रकार 1 द्वारा प्रतिरूपित नहीं किया जा सकता है)।


एक सममित बंटन जो पूंछ (लंबी और छोटी) और केंद्र व्यवहार (जैसे फ्लैट, त्रिकोणीय या गाऊसी) दोनों को पूरी तरह से स्वतंत्र रूप से मॉडल कर सकता है, उदाहरण के लिए प्राप्त किया जा सकता है। X = IH/chi का उपयोग करके।
एक सममित बंटन जो पट (लंबी और छोटी) और केंद्र व्यवहार (जैसे फ्लैट, त्रिकोणीय या गाऊसी) दोनों को पूरी तरह से स्वतंत्र रूप से मॉडल कर सकता है, उदाहरण के लिए प्राप्त किया जा सकता है। X = IH/chi का उपयोग करके।


==यह भी देखें==
==यह भी देखें==

Revision as of 15:57, 18 July 2023

सामान्यीकृत सामान्य बंटन या सामान्यीकृत गॉसियन बंटन (जीजीडी) वास्तविक रेखा पर पैरामीट्रिक निरंतर संभाव्यता बंटन के दो कुलों में से एक है। दोनों कुल सामान्य बंटन में एक आकृति पैरामीटर जोड़ते हैं। दोनों कुलों को अलग करने के लिए, उन्हें नीचे "सममित" और "असममित" कहा गया है; हालाँकि, यह मानक नामकरण नहीं है।

सममित संस्करण

Symmetric Generalized Normal
Probability density function
Probability density plots of generalized normal distributions
Cumulative distribution function
Cumulative distribution function plots of generalized normal distributions
Parameters location (real)
scale (positive, real)
shape (positive, real)
Support
PDF



denotes the gamma function
CDF

where is a shape parameter, is a scale parameter and is the unnormalized incomplete lower gamma function.
Quantile


where is the quantile function of Gamma distribution[1]
Mean
Median
Mode
Variance
Skewness 0
Ex. kurtosis
Entropy [2]

सममित सामान्यीकृत सामान्य बंटन, जिसे चरघातांकी घातीय बंटन या सामान्यीकृत त्रुटि बंटन के रूप में भी जाना जाता है, सममित बंटन का एक पैरामीट्रिक कुल है। इसमें सभी सामान्य और लाप्लास बंटन शामिल हैं, और सीमित मामलों के रूप में, इसमें वास्तविक रेखा के सीमित अंतराल पर सभी निरंतर समान बंटन शामिल हैं।

इस कुल में सामान्य बंटन शामिल है जब (माध्य और भिन्नता } के साथ) और इसमें लाप्लास बंटन शामिल है जब के रूप में, घनत्व पर बिंदुवार एक समान घनत्व में परिवर्तित हो जाता है।

यह कुल ऐसी पट की अनुमति देता है जो या तो सामान्य से अधिक भारी होती हैं (जब ) या सामान्य से हल्की होती हैं (जब )। यह सामान्य () से एकसमान घनत्व तक फैले सममित, प्लैटीकर्टिक घनत्वों की सातत्यता को पैरामीट्रिज करने का एक उपयोगी तरीका है। (), और लाप्लास () से सामान्य घनत्व ( ) तक फैले सममित, लेप्टोकर्टिक घनत्वों की एक निरंतरता। आकार पैरामीटर पट के अतिरिक्त शिखरता को भी नियंत्रित करता है।

पैरामीटर अनुमान

अधिकतम संभावना और क्षणों की विधि के माध्यम से पैरामीटर अनुमान का अध्ययन किया गया है।[3] अनुमानों का कोई बंद रूप नहीं है और उन्हें संख्यात्मक रूप से प्राप्त किया जाना चाहिए। ऐसे अनुमानकर्ता भी प्रस्तावित किए गए हैं जिन्हें संख्यात्मक गणना की आवश्यकता नहीं है।[4]

सामान्यीकृत सामान्य लॉग-संभावना फ़ंक्शन में अनंत रूप से कई निरंतर व्युत्पन्न होते हैं (यानी यह सुचारू कार्यों के वर्ग C∞ से संबंधित होता है) केवल तभी जब β एक धनात्मक, सम पूर्णांक है। अन्यथा, फ़ंक्शन में निरंतर डेरिवेटिव हैं। परिणामस्वरूप, की अधिकतम संभावना अनुमानों की स्थिरता और स्पर्शोन्मुख सामान्यता के लिए मानक परिणाम केवल तभी लागू होते जब हैं ।

अधिकतम संभावना अनुमानक

अनुमानित अधिकतम संभावना पद्धति को अपनाकर सामान्यीकृत सामान्य बंटन को फिट करना संभव है।[5][6] को आरंभ में नमूना प्रथम क्षण पर सेट करने के साथ, का अनुमान न्यूटन-रेफसन पुनरावृत्त प्रक्रिया का उपयोग करके किया जाता है, जो के प्रारंभिक अनुमान से शुरू होता है,

जहाँ

निरपेक्ष मूल्यों का पहला सांख्यिकीय क्षण (गणित) है और दूसरा सांख्यिकीय क्षण (गणित) है। पुनरावृत्ति है

जहाँ

और

और जहाँ और डिगामा फ़ंक्शन और ट्राइगामा फ़ंक्शन हैं।

के लिए एक मान दिया गया है , अनुमान लगाना संभव है न्यूनतम ज्ञात करके:

आखिरकार के रूप में मूल्यांकन किया जाता है

के लिए, माध्यिका का अधिक उपयुक्त अनुमानक है। एक बार जब का अनुमान लगाया जाता है, तो और का अनुमान लगाया जा सकता है जैसा कि ऊपर वर्णित है।[7]

अनुप्रयोग

सममित सामान्यीकृत सामान्य बंटन का उपयोग मॉडलिंग में किया गया है जब माध्य और पट व्यवहार के आसपास मूल्यों की एकाग्रता विशेष रुचि रखती है।[8][9] यदि सामान्यता से अन्य विचलनों पर ध्यान केंद्रित किया जाता है तो बंटन के अन्य कुलों का उपयोग किया जा सकता है। यदि बंटन की समरूपता मुख्य रुचि है, तो नीचे चर्चा की गई सामान्यीकृत सामान्य कुल के विषम सामान्य कुल या असममित संस्करण का उपयोग किया जा सकता है। यदि पट का व्यवहार मुख्य रुचि है, तो छात्र t कुल का उपयोग किया जा सकता है, जो स्वतंत्रता की डिग्री अनंत तक बढ़ने पर सामान्य बंटन का अनुमान लगाता है। t बंटन, इस सामान्यीकृत सामान्य बंटन के विपरीत, मूल पर एक पुच्छ प्राप्त किए बिना सामान्य पट की तुलना में भारी हो जाता है।

गुण

क्षण

मान लीजिए कि आकृति और स्केलिंग पैरामीटर का शून्य माध्य सामान्यीकृत गाऊसी बंटन है। के परिमित मौजूद हैं और −1 से बड़े किसी भी k के लिए सीमित हैं। किसी भी गैर-ऋणात्मक पूर्णांक k के लिए, सादे केंद्रीय क्षण हैं[2]

स्थैतिक गणना बंटन से संपर्क

स्थिर गिनती बंटन के दृष्टिकोण से, को लेवी की स्थिरता पैरामीटर के रूप में माना जा सकता है। इस बंटन को कर्नेल घनत्व के अभिन्न अंग में विघटित किया जा सकता है जहां कर्नेल या तो लाप्लास बंटन या गॉसियन बंटन है:

जहां स्थिर गणना बंटन है और स्थिर वोल बंटन है।

धनात्मक-निश्चित फलनों से संबंध

सममित सामान्यीकृत सामान्य बंटन का संभाव्यता घनत्व फ़ंक्शन एक धनात्मक-निश्चित फ़ंक्शन है .[10][11]

अनंत विभाज्यता

सममित सामान्यीकृत गॉसियन बंटन एक असीम रूप से विभाज्य बंटन है यदि और केवल यदि .[12]

सामान्यीकरण

बहुभिन्नरूपी सामान्यीकृत सामान्य बंटन, यानी का उत्पाद उसी के साथ घातीय शक्ति बंटन और पैरामीटर, एकमात्र संभाव्यता घनत्व है जिसे फॉर्म में लिखा जा सकता है और स्वतंत्र सीमांत हैं।[13] बहुभिन्नरूपी सामान्य बंटन के विशेष मामले के परिणामों का श्रेय मूल रूप से जेम्स क्लर्क मैक्सवेल को दिया जाता है।[14]

असममित संस्करण

Asymmetric Generalized Normal
Probability density function
Probability density plots of generalized normal distributions
Cumulative distribution function
Cumulative distribution function plots of generalized normal distributions
Parameters location (real)
scale (positive, real)
shape (real)
Support

PDF , where

is the standard normal pdf
CDF , where

is the standard normal CDF
Mean
Median
Variance
Skewness
Ex. kurtosis

असममित सामान्यीकृत सामान्य बंटन निरंतर संभाव्यता बंटन का एक कुल है जिसमें आकार पैरामीटर का उपयोग विषमता या तिरछापन पेश करने के लिए किया जा सकता है।[15][16] जब आकार पैरामीटर शून्य होता है, तो सामान्य बंटन परिणाम होता है। आकार पैरामीटर के धनात्मक मान दाईं ओर बंधे बाएं-तिरछे बंटन उत्पन्न करते हैं, और आकार पैरामीटर के नकारात्मक मान बाईं ओर बंधे दाएं-तिरछे बंटन उत्पन्न करते हैं। केवल जब आकार पैरामीटर शून्य होता है, तो इस बंटन के लिए घनत्व फ़ंक्शन पूरी वास्तविक रेखा पर धनात्मक होता है: इस मामले में बंटन एक सामान्य बंटन है, अन्यथा बंटन स्थानांतरित हो जाते हैं और संभवतः लॉग-सामान्य बंटन उलट जाते हैं।

पैरामीटर अनुमान

पैरामीटर्स का अनुमान अधिकतम संभावना अनुमान या क्षणों की विधि के माध्यम से लगाया जा सकता है। पैरामीटर अनुमानों का कोई बंद रूप नहीं होता है, इसलिए अनुमानों की गणना के लिए संख्यात्मक गणना का उपयोग किया जाना चाहिए। चूंकि नमूना स्थान (वास्तविक संख्याओं का सेट जहां घनत्व गैर-शून्य है) पैरामीटर के वास्तविक मूल्य पर निर्भर करता है, इस कुल के साथ काम करते समय पैरामीटर अनुमानों के प्रदर्शन के बारे में कुछ मानक परिणाम स्वचालित रूप से लागू नहीं होंगे।

अनुप्रयोग

असममित सामान्यीकृत सामान्य बंटन का उपयोग उन मानों को मॉडल करने के लिए किया जा सकता है जिन्हें सामान्य रूप से वितरित किया जा सकता है, या जो सामान्य बंटन के सापेक्ष दाएं-तिरछा या बाएं-तिरछा हो सकता है। तिरछा सामान्य बंटन एक और बंटन है जो तिरछा होने के कारण सामान्यता से विचलन के मॉडलिंग के लिए उपयोगी है। विषम डेटा को मॉडल करने के लिए उपयोग किए जाने वाले अन्य वितरणों में गामा बंटन, लॉगनॉर्मल बंटन और वेइबुल बंटन बंटन शामिल हैं, लेकिन इनमें विशेष मामलों के रूप में सामान्य बंटन शामिल नहीं हैं।

सामान्य से संबंधित अन्य बंटन

यहां वर्णित दो सामान्यीकृत सामान्य कुल, तिरछा सामान्य बंटन कुल की तरह, पैरामीट्रिक कुल हैं जो एक आकार पैरामीटर जोड़कर सामान्य बंटन का विस्तार करते हैं। संभाव्यता और सांख्यिकी में सामान्य बंटन की केंद्रीय भूमिका के कारण, कई वितरणों को सामान्य बंटन के साथ उनके संबंध के संदर्भ में चित्रित किया जा सकता है। उदाहरण के लिए, लॉग-सामान्य बंटन|लॉग-सामान्य, मुड़ा हुआ सामान्य बंटन, और व्युत्क्रम सामान्य बंटन बंटन को सामान्य रूप से वितरित मूल्य के परिवर्तनों के रूप में परिभाषित किया जाता है, लेकिन सामान्यीकृत सामान्य और तिरछा-सामान्य कुलों के विपरीत, इनमें सामान्य शामिल नहीं होता है विशेष मामलों के रूप में बंटन.

वास्तव में परिमित विचरण वाले सभी बंटन सामान्य बंटन से अत्यधिक संबंधित सीमा में होते हैं। स्टूडेंट-टी बंटन, इरविन-हॉल बंटन और बेट्स बंटन भी सामान्य बंटन का विस्तार करते हैं, और सीमा में सामान्य बंटन को शामिल करते हैं। इसलिए टाइप 1 के सामान्यीकृत सामान्य बंटन को प्राथमिकता देने का कोई मजबूत कारण नहीं है, उदाहरण के लिए। स्टूडेंट-टी और एक सामान्यीकृत विस्तारित इरविन-हॉल के संयोजन पर - इसमें उदाहरण शामिल होगा। त्रिकोणीय बंटन (जिसे सामान्यीकृत गाऊसी प्रकार 1 द्वारा प्रतिरूपित नहीं किया जा सकता है)।

एक सममित बंटन जो पट (लंबी और छोटी) और केंद्र व्यवहार (जैसे फ्लैट, त्रिकोणीय या गाऊसी) दोनों को पूरी तरह से स्वतंत्र रूप से मॉडल कर सकता है, उदाहरण के लिए प्राप्त किया जा सकता है। X = IH/chi का उपयोग करके।

यह भी देखें

संदर्भ

  1. Griffin, Maryclare. "Working with the Exponential Power Distribution Using gnorm". Github, gnorm package. Retrieved 26 June 2020.
  2. 2.0 2.1 Nadarajah, Saralees (September 2005). "A generalized normal distribution". Journal of Applied Statistics. 32 (7): 685–694. doi:10.1080/02664760500079464. S2CID 121914682.
  3. Varanasi, M.K.; Aazhang, B. (October 1989). "पैरामीट्रिक सामान्यीकृत गाऊसी घनत्व अनुमान". Journal of the Acoustical Society of America. 86 (4): 1404–1415. Bibcode:1989ASAJ...86.1404V. doi:10.1121/1.398700.
  4. Domínguez-Molina, J. Armando; González-Farías, Graciela; Rodríguez-Dagnino, Ramón M. "A practical procedure to estimate the shape parameter in the generalized Gaussian distribution" (PDF). Retrieved 2009-03-03. {{cite journal}}: Cite journal requires |journal= (help)
  5. Varanasi, M.K.; Aazhang B. (1989). "पैरामीट्रिक सामान्यीकृत गाऊसी घनत्व अनुमान". J. Acoust. Soc. Am. 86 (4): 1404–1415. Bibcode:1989ASAJ...86.1404V. doi:10.1121/1.398700.
  6. Do, M.N.; Vetterli, M. (February 2002). "सामान्यीकृत गाऊसी घनत्व और कुल्बैक-लीबलर दूरी का उपयोग करके वेवलेट-आधारित बनावट पुनर्प्राप्ति". Transaction on Image Processing. 11 (2): 146–158. Bibcode:2002ITIP...11..146D. doi:10.1109/83.982822. PMID 18244620.
  7. Varanasi, Mahesh K.; Aazhang, Behnaam (1989-10-01). "पैरामीट्रिक सामान्यीकृत गाऊसी घनत्व अनुमान". The Journal of the Acoustical Society of America. 86 (4): 1404–1415. Bibcode:1989ASAJ...86.1404V. doi:10.1121/1.398700. ISSN 0001-4966.
  8. Liang, Faming; Liu, Chuanhai; Wang, Naisyin (April 2007). "A robust sequential Bayesian method for identification of differentially expressed genes". Statistica Sinica. 17 (2): 571–597. Archived from the original on 2007-10-09. Retrieved 2009-03-03.
  9. Box, George E. P.; Tiao, George C. (1992). Bayesian Inference in Statistical Analysis. New York: Wiley. ISBN 978-0-471-57428-6.
  10. Dytso, Alex; Bustin, Ronit; Poor, H. Vincent; Shamai, Shlomo (2018). "Analytical properties of generalized Gaussian distributions". Journal of Statistical Distributions and Applications. 5 (1): 6. doi:10.1186/s40488-018-0088-5.
  11. Bochner, Salomon (1937). "Stable laws of probability and completely monotone functions". Duke Mathematical Journal. 3 (4): 726–728. doi:10.1215/s0012-7094-37-00360-0.
  12. Dytso, Alex; Bustin, Ronit; Poor, H. Vincent; Shamai, Shlomo (2018). "Analytical properties of generalized Gaussian distributions". Journal of Statistical Distributions and Applications. 5 (1): 6. doi:10.1186/s40488-018-0088-5.
  13. Sinz, Fabian; Gerwinn, Sebastian; Bethge, Matthias (May 2009). "पी-सामान्यीकृत सामान्य वितरण की विशेषता।". Journal of Multivariate Analysis. 100 (5): 817–820. doi:10.1016/j.jmva.2008.07.006.
  14. Kac, M. (1939). "सामान्य वितरण के लक्षण वर्णन पर". American Journal of Mathematics. 61 (3): 726–728. doi:10.2307/2371328. JSTOR 2371328.
  15. Hosking, J.R.M., Wallis, J.R. (1997) Regional frequency analysis: an approach based on L-moments, Cambridge University Press. ISBN 0-521-43045-3. Section A.8
  16. Documentation for the lmomco R package