क्रमिक रूप से संहतसमष्‍टि: Difference between revisions

From Vigyanwiki
No edit summary
(No difference)

Revision as of 12:00, 14 July 2023

गणित में, टोपोलॉजिकल समष्टि . प्रत्येक मापीय (मीट्रिक) समष्टि स्वाभाविक रूप से एक टोपोलॉजिकल समष्टि है, और मीट्रिक समष्टि के लिए, सघन समष्टि और अनुक्रमिक कॉम्पैक्टनेस की धारणाएं समतुल्य हैं (यदि कोई गणनीय विकल्प के सिद्धांत को मानता है)। हालाँकि, क्रमिक रूप से कॉम्पैक्ट टोपोलॉजिकल समष्टि उपस्थित हैं जो कॉम्पैक्ट नहीं हैं, और कॉम्पैक्ट टोपोलॉजिकल समष्टि उपस्थित हैं जो क्रमिक रूप से कॉम्पैक्ट नहीं हैं।

उदाहरण और गुण

मानक टोपोलॉजी के साथ सभी वास्तविक संख्याओं का समष्टि क्रमिक रूप से संकुचित नहीं होता है; क्रम द्वारा दिए गए सभी प्राकृतिक संख्याओं के लिए एक अनुक्रम है जिसका कोई अभिसरण अनुवर्ती नहीं है।

यदि कोई समष्टि एक मीट्रिक समष्टि है, तो यह क्रमिक रूप से कॉम्पैक्ट है यदि और केवल यदि यह कॉम्पैक्ट समष्टि है।[1] ऑर्डर टोपोलॉजी के साथ पहला अगणनीय क्रमसूचक क्रमिक रूप से कॉम्पैक्ट टोपोलॉजिकल समष्टि का एक उदाहरण है जो कॉम्पैक्ट नहीं है। उत्पाद टोपोलॉजी का सवृत इकाई अंतराल की प्रतियां कॉम्पैक्ट समष्टि का एक उदाहरण है जो क्रमिक रूप से कॉम्पैक्ट नहीं है।[2]

संबंधित धारणाएँ

एक टोपोलॉजिकल समष्टि यदि प्रत्येक अनंत उपसमुच्चय हो तो सीमा बिंदु संहत कहा जाता है में एक सीमा बिंदु है , और गणनीय रूप से सघन समष्टि यदि प्रत्येक गणनीय विवृत आवरण में एक परिमित उपकवर हो। मीट्रिक सअनुक्रमिक कॉम्पैक्टनेस, सीमा बिंदु कॉम्पैक्टनेस, गणनीय कॉम्पैक्टनेस और कॉम्पैक्ट समष्टि की धारणाएं सभी समतुल्य हैं (यदि कोई पसंद के सिद्धांत को मानता है)।

अनुक्रमिक समष्टि में अनुक्रमिक (हॉसडॉर्फ) समष्टि अनुक्रमिक सघनता गणनीय सघनता के बराबर है।[3]

एक-बिंदु अनुक्रमिक संघनन की भी एक धारणा है - विचार यह है कि सभी गैर-अभिसरण अनुक्रमों को अतिरिक्त बिंदु पर एकत्रित होना चाहिए।[4]

यह भी देखें

टिप्पणियाँ

  1. Willard, 17G, p. 125.
  2. Steen and Seebach, Example 105, pp. 125—126.
  3. Engelking, General Topology, Theorem 3.10.31
    K.P. Hart, Jun-iti Nagata, J.E. Vaughan (editors), Encyclopedia of General Topology, Chapter d3 (by P. Simon)
  4. Brown, Ronald, "Sequentially proper maps and a sequential compactification", J. London Math Soc. (2) 7 (1973) 515-522.

संदर्भ

  • Munkres, James (1999). Topology (2nd ed.). Prentice Hall. ISBN 0-13-181629-2.
  • Steen, Lynn A. and Seebach, J. Arthur Jr.; Counterexamples in Topology, Holt, Rinehart and Winston (1970). ISBN 0-03-079485-4.
  • Willard, Stephen (2004). General Topology. Dover Publications. ISBN 0-486-43479-6.