डोर स्पेस: Difference between revisions
(Created page with "गणित में, विशेष रूप से टोपोलॉजी के क्षेत्र में, एक टोपोलॉजिकल स्प...") |
No edit summary |
||
Line 1: | Line 1: | ||
गणित में, विशेष रूप से [[टोपोलॉजी]] के क्षेत्र में, एक [[टोपोलॉजिकल स्पेस]] को एक डोर स्पेस कहा जाता है यदि प्रत्येक उपसमुच्चय | गणित में, विशेष रूप से [[टोपोलॉजी]] के क्षेत्र में, एक [[टोपोलॉजिकल स्पेस]] को एक डोर स्पेस कहा जाता है यदि प्रत्येक उपसमुच्चय खुला या बंद (या दोनों) हो।{{sfn|Kelley|1975|loc=ch.2, Exercise C, p. 76}} यह शब्द परिचयात्मक टोपोलॉजी स्मरक से आया है कि "एक उपसमुच्चय एक डोर की तरह नहीं है: यह खुला, बंद, एक भी या दोनों हो सकता है।"। | ||
==गुण और उदाहरण== | ==गुण और उदाहरण== | ||
प्रत्येक | प्रत्येक दरवाज़े का स्थान T<sub>0</sub> है (क्योंकि यदि <math>x</math> और <math>y</math> दो स्थैतिक रूप से अविभाज्य बिंदु हैं, तो सिंगलटन <math>\{x\}</math> न तो खुला है और न ही बंद है)। | ||
दरवाज़े के स्थान का प्रत्येक [[उपस्थान (टोपोलॉजी)|उपस्थान]] एक दरवाज़ा स्थान है।<ref>{{cite journal |last1=Dontchev |first1=Julian |title=दरवाजे के स्थानों पर|journal=Indian Journal of Pure and Applied Mathematics |date=1995 |volume=26 |issue=9 |pages=873–881 |url=https://www.insa.nic.in/writereaddata/UpLoadedFiles/IJPAM/20005a1b_873.pdf }} Theorem 2.6</ref> दरवाज़े की जगह का हर भाग ऐसा ही है।{{sfn|Dontchev|1995|loc=Corollary 2.12}} | |||
प्रत्येक टोपोलॉजी एक सेट पर | प्रत्येक टोपोलॉजी एक सेट पर डोर टोपोलॉजी से अधिक उत्कृष्ट होती है <math>X</math> भी एक डोर टोपोलॉजी है। | ||
प्रत्येक [[पृथक स्थान]] एक द्वार स्थान है। ये [[संचय बिंदु]] रहित रिक्त स्थान हैं, अर्थात जिनका प्रत्येक बिंदु एक [[पृथक बिंदु]] है। | प्रत्येक [[पृथक स्थान]] एक द्वार स्थान है। ये [[संचय बिंदु]] रहित रिक्त स्थान हैं, अर्थात जिनका प्रत्येक बिंदु एक [[पृथक बिंदु]] है। |
Revision as of 08:30, 14 July 2023
गणित में, विशेष रूप से टोपोलॉजी के क्षेत्र में, एक टोपोलॉजिकल स्पेस को एक डोर स्पेस कहा जाता है यदि प्रत्येक उपसमुच्चय खुला या बंद (या दोनों) हो।[1] यह शब्द परिचयात्मक टोपोलॉजी स्मरक से आया है कि "एक उपसमुच्चय एक डोर की तरह नहीं है: यह खुला, बंद, एक भी या दोनों हो सकता है।"।
गुण और उदाहरण
प्रत्येक दरवाज़े का स्थान T0 है (क्योंकि यदि और दो स्थैतिक रूप से अविभाज्य बिंदु हैं, तो सिंगलटन न तो खुला है और न ही बंद है)।
दरवाज़े के स्थान का प्रत्येक उपस्थान एक दरवाज़ा स्थान है।[2] दरवाज़े की जगह का हर भाग ऐसा ही है।[3]
प्रत्येक टोपोलॉजी एक सेट पर डोर टोपोलॉजी से अधिक उत्कृष्ट होती है भी एक डोर टोपोलॉजी है।
प्रत्येक पृथक स्थान एक द्वार स्थान है। ये संचय बिंदु रहित रिक्त स्थान हैं, अर्थात जिनका प्रत्येक बिंदु एक पृथक बिंदु है।
हर जगह ठीक एक संचय बिंदु (और अन्य सभी बिंदु पृथक) के साथ एक द्वार स्थान है (क्योंकि केवल पृथक बिंदुओं वाले उपसमुच्चय खुले होते हैं, और संचय बिंदु वाले उपसमुच्चय बंद होते हैं)। कुछ उदाहरण हैं: (1) एक अलग स्थान (जिसे किले का स्थान भी कहा जाता है) का एक-बिंदु संघनन, जहां अनंत पर बिंदु संचय बिंदु है; (2) बहिष्कृत बिंदु टोपोलॉजी वाला एक स्थान, जहां बहिष्कृत बिंदु संचय बिंदु है।
प्रत्येक हॉसडॉर्फ अंतरिक्ष द्वार स्थान या तो अलग है या बिल्कुल एक संचय बिंदु है। (यह देखने के लिए, यदि विशिष्ट संचय बिंदुओं वाला एक स्थान है और संबंधित असंयुक्त पड़ोस वाले और सेट न तो बंद है और न ही अंदर से खुला है )[4] एक से अधिक संचय बिंदु वाले द्वार स्थान का एक उदाहरण एक सेट पर विशेष बिंदु टोपोलॉजी द्वारा दिया गया है कम से कम तीन अंक के साथ. खुले समुच्चय एक विशेष बिंदु वाले उपसमुच्चय हैं खाली सेट के साथ. बिंदु एक पृथक बिंदु है और अन्य सभी बिंदु संचय बिंदु हैं। (यह एक दरवाज़ा स्थान है क्योंकि प्रत्येक सेट में शामिल है खुला है और प्रत्येक सेट में शामिल नहीं है बंद है।) एक अन्य उदाहरण विशेष बिंदु टोपोलॉजी और एक अलग स्थान के साथ एक स्थान का टोपोलॉजिकल योग होगा।
द्वार स्थान बिना किसी पृथक बिंदु के वे बिल्कुल फॉर्म की टोपोलॉजी वाले होते हैं कुछ निःशुल्क मुफ़्त अल्ट्राफ़िल्टर लिए पर [5] ऐसे स्थान आवश्यक रूप से अनंत हैं।
कनेक्टेड डोर स्पेस बिल्कुल तीन प्रकार के होते हैं :[6][7]
- बहिष्कृत बिंदु टोपोलॉजी वाला एक स्थान;
- विशेष बिंदु टोपोलॉजी वाला एक स्थान;
- टोपोलॉजी वाला एक स्थान ऐसा है कि एक मुफ़्त अल्ट्राफ़िल्टर चालू है
यह भी देखें
टिप्पणियाँ
- ↑ Kelley 1975, ch.2, Exercise C, p. 76.
- ↑ Dontchev, Julian (1995). "दरवाजे के स्थानों पर" (PDF). Indian Journal of Pure and Applied Mathematics. 26 (9): 873–881. Theorem 2.6
- ↑ Dontchev 1995, Corollary 2.12.
- ↑ "Proving that If $(X,\tau)$ is a Hausdorff door space, then at most one point $x \in X$ is a limit point of $X$". Mathematics Stack Exchange.
- ↑ McCartan, S. D. (1987). "दरवाजे के स्थान पहचाने जाने योग्य हैं". Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences. 87A (1): 13–16. ISSN 0035-8975. JSTOR 20489255.
- ↑ McCartan 1987, Corollary 3.
- ↑ Wu, Jianfeng; Wang, Chunli; Zhang, Dong (2018). "कनेक्टेड डोर स्पेस और समीकरणों के टोपोलॉजिकल समाधान". Aequationes Mathematicae. 92 (6): 1149–1161. arXiv:1809.03085. doi:10.1007/s00010-018-0577-0. ISSN 0001-9054. S2CID 253598359. Theorem 1
संदर्भ
- Kelley, John L. (1975). General Topology. Graduate Texts in Mathematics. Vol. 27. New York: Springer Science & Business Media. ISBN 978-0-387-90125-1. OCLC 338047.