विच्छेदन प्रमेय: Difference between revisions

From Vigyanwiki
Line 16: Line 16:


=== प्रमाण रेखाचित्र ===
=== प्रमाण रेखाचित्र ===
छांटना प्रमेय का प्रमाण काफी सहज है, हालांकि विवरण इसमें शामिल हैं। विचार यह है कि "छोटी" सरलताओं से युक्त एक और श्रृंखला प्राप्त करने के लिए <math>(X, A)</math> में एक सापेक्ष चक्र में सरलताओं को उप-विभाजित किया जाए, और इस प्रक्रिया को तब तक जारी रखा जाए जब तक श्रृंखला में प्रत्येक सरलता पूरी तरह से <math>A</math> के आंतरिक भाग या <math>X \setminus U</math> के आंतरिक भाग में न आ जाए।  चूँकि ये <math>X</math> के लिए एक खुला आवरण बनाते हैं और सरलीकरण सघन होते हैं, हम अंततः इसे चरणों की एक सीमित संख्या में कर सकते हैं। यह प्रक्रिया श्रृंखला के मूल समरूपता वर्ग को अपरिवर्तित छोड़ देती है (यह कहता है कि उपखंड ऑपरेटर समरूपता पर पहचान मानचित्र के लिए श्रृंखला समस्थानिक है)। सापेक्ष समरूपता में <math>H_n(X, A)</math> फिर, यह कहता है कि सभी शब्द पूरी तरह से इसके आंतरिक भाग में निहित हैं <math>U</math> को चक्र के होमोलॉजी वर्ग को प्रभावित किए बिना हटाया जा सकता है। यह हमें यह दिखाने की अनुमति देता है कि समावेशन मानचित्र एक समरूपता है, क्योंकि प्रत्येक सापेक्ष चक्र एक के बराबर है जो <math>U</math> से पूरी तरह से बचता है।
उच्छेदन प्रमेय का प्रमाण काफी सहज है, हालांकि विवरण इसमें शामिल हैं। विचार यह है कि "छोटी" सरलताओं से युक्त एक और श्रृंखला प्राप्त करने के लिए <math>(X, A)</math> में एक सापेक्ष चक्र में सरलताओं को उप-विभाजित किया जाए, और इस प्रक्रिया को तब तक जारी रखा जाए जब तक श्रृंखला में प्रत्येक सरलता पूरी तरह से <math>A</math> के आंतरिक भाग या <math>X \setminus U</math> के आंतरिक भाग में न आ जाए।  चूँकि ये <math>X</math> के लिए एक खुला आवरण बनाते हैं और सरलीकरण सघन होते हैं, हम अंततः इसे चरणों की एक सीमित संख्या में कर सकते हैं। यह प्रक्रिया श्रृंखला के मूल समरूपता वर्ग को अपरिवर्तित छोड़ देती है (यह कहता है कि उपखंड ऑपरेटर समरूपता पर पहचान मानचित्र के लिए श्रृंखला समस्थानिक है)। सापेक्ष समरूपता में <math>H_n(X, A)</math> फिर, यह कहता है कि सभी शब्द पूरी तरह से इसके आंतरिक भाग में निहित हैं <math>U</math> को चक्र के होमोलॉजी वर्ग को प्रभावित किए बिना हटाया जा सकता है। यह हमें यह दिखाने की अनुमति देता है कि समावेशन मानचित्र एक समरूपता है, क्योंकि प्रत्येक सापेक्ष चक्र एक के बराबर है जो <math>U</math> से पूरी तरह से बचता है।


== अनुप्रयोग ==
== अनुप्रयोग ==
Line 22: Line 22:
=== ईलेनबर्ग-स्टीनरोड एक्सिओम्स ===
=== ईलेनबर्ग-स्टीनरोड एक्सिओम्स ===


छांटना प्रमेय को इलेनबर्ग-स्टीनरोड एक्सिओम्स में से एक माना जाता है।
उच्छेदन प्रमेय को एलेनबर्ग-स्टीनरोड एक्सिओम्स में से एक माना जाता है।


=== मेयर-विएटोरिस अनुक्रम ===
=== मेयर-विएटोरिस अनुक्रम ===


मेयर-विएटोरिस अनुक्रम को छांटना प्रमेय और लंबे-सटीक अनुक्रम के संयोजन से प्राप्त किया जा सकता है।<ref>See Hatcher 2002, p.149, for example</ref>
मेयर-विएटोरिस अनुक्रम को उच्छेदन प्रमेय और लंबे-सटीक अनुक्रम के संयोजन से प्राप्त किया जा सकता है।<ref>See Hatcher 2002, p.149, for example</ref>




=== होमोलॉजी के लिए निलंबन प्रमेय ===
=== होमोलॉजी के लिए निलंबन प्रमेय ===


होमोलॉजी के लिए निलंबन प्रमेय को प्राप्त करने के लिए छांटना प्रमेय का उपयोग किया जा सकता है, जो कहता है <math>\tilde{H}_n(X) \cong \tilde{H}_{n+1}(SX)</math> सभी के लिए <math>n</math>, कहाँ <math>SX</math> का [[ निलंबन (टोपोलॉजी) ]] है <math>X</math>. <ref>See Hatcher 2002, p.132, for example</ref>
होमोलॉजी के लिए निलंबन प्रमेय को प्राप्त करने के लिए उच्छेदन प्रमेय का उपयोग किया जा सकता है, जो कहता है <math>\tilde{H}_n(X) \cong \tilde{H}_{n+1}(SX)</math> सभी के लिए <math>n</math>, कहाँ <math>SX</math> का [[ निलंबन (टोपोलॉजी) ]] है <math>X</math>. <ref>See Hatcher 2002, p.132, for example</ref>




===आयाम का अपरिवर्तन===
===आयाम का अपरिवर्तन===
यदि गैर-रिक्त खुले सेट <math> U\subset \mathbb{R}^n</math> और <math> V\subset \mathbb{R}^m</math>
यदि गैर-रिक्त खुले सेट <math> U\subset \mathbb{R}^n</math> और <math> V\subset \mathbb{R}^m</math>
समरूपी हैं, तो m = n. यह छांटना प्रमेय, जोड़ी के लिए लंबे सटीक अनुक्रम का अनुसरण करता है <math>(\mathbb{R}^n,\mathbb{R}^n-x)</math>, और तथ्य यह है कि <math> \mathbb{R}^n-x</math> विरूपण एक गोले पर वापस आ जाता है।
समरूपी हैं, तो m = n. यह उच्छेदन प्रमेय, जोड़ी के लिए लंबे सटीक अनुक्रम का अनुसरण करता है <math>(\mathbb{R}^n,\mathbb{R}^n-x)</math>, और तथ्य यह है कि <math> \mathbb{R}^n-x</math> विरूपण एक गोले पर वापस आ जाता है।
विशेष रूप से, <math>\mathbb{R}^n</math> के लिए होमोमोर्फिक नहीं है <math>\mathbb{R}^m</math> अगर <math>m\neq n</math>.<ref>See Hatcher 2002, p.135</ref>
विशेष रूप से, <math>\mathbb{R}^n</math> के लिए होमोमोर्फिक नहीं है <math>\mathbb{R}^m</math> अगर <math>m\neq n</math>.<ref>See Hatcher 2002, p.135</ref>



Revision as of 10:34, 13 July 2023

बीजगणितीय टोपोलॉजी में, गणित की एक शाखा, एक्सिशन प्रमेय सापेक्ष समरूपता के बारे में एक प्रमेय है और ईलेनबर्ग-स्टीनरोड सिद्धांतों में से एक है। एक टोपोलॉजिकल स्पेस सबस्पेस और को देखते हुए भी का एक सबस्पेस है, प्रमेय कहता है कि कुछ परिस्थितियों में, हम दोनों स्थानों से को इस तरह से काट सकते हैं (एक्साइज़) कि जोड़े के में सापेक्ष समरूपता आइसोमोर्फिक हैं।

यह एकवचन समरूपता समूहों की गणना में सहायता करता है, क्योंकि कभी-कभी उचित रूप से चुने गए उप-स्थान का उपयोग करने के बाद हमें गणना करने में आसान कुछ प्राप्त होता है।

प्रमेय

कथन

यदि उपरोक्त के अनुसार हैं, तो हम कहते हैं कि को एक्साइज किया जा सकता है यदि जोड़ी में शामिल किया गया मानचित्र सापेक्ष समरूपता पर एक समरूपता उत्पन्न करता है:

प्रमेय कहता है कि यदि का समापन के आंतरिक भाग में समाहित है, तो को एक्साइज़ किया जा सकता है।

अक्सर, उप-स्थान जो इस रोकथाम मानदंड को पूरा नहीं करते हैं, उन्हें अभी भी एक्साइज किया जा सकता है - यह उन उप-स्थानों पर उप-स्थानों की विकृति को वापस लेने में सक्षम होने के लिए पर्याप्त है जो इसे संतुष्ट करते हैं।

प्रमाण रेखाचित्र

उच्छेदन प्रमेय का प्रमाण काफी सहज है, हालांकि विवरण इसमें शामिल हैं। विचार यह है कि "छोटी" सरलताओं से युक्त एक और श्रृंखला प्राप्त करने के लिए में एक सापेक्ष चक्र में सरलताओं को उप-विभाजित किया जाए, और इस प्रक्रिया को तब तक जारी रखा जाए जब तक श्रृंखला में प्रत्येक सरलता पूरी तरह से के आंतरिक भाग या के आंतरिक भाग में न आ जाए।  चूँकि ये के लिए एक खुला आवरण बनाते हैं और सरलीकरण सघन होते हैं, हम अंततः इसे चरणों की एक सीमित संख्या में कर सकते हैं। यह प्रक्रिया श्रृंखला के मूल समरूपता वर्ग को अपरिवर्तित छोड़ देती है (यह कहता है कि उपखंड ऑपरेटर समरूपता पर पहचान मानचित्र के लिए श्रृंखला समस्थानिक है)। सापेक्ष समरूपता में  फिर, यह कहता है कि सभी शब्द पूरी तरह से इसके आंतरिक भाग में निहित हैं को चक्र के होमोलॉजी वर्ग को प्रभावित किए बिना हटाया जा सकता है। यह हमें यह दिखाने की अनुमति देता है कि समावेशन मानचित्र एक समरूपता है, क्योंकि प्रत्येक सापेक्ष चक्र एक के बराबर है जो से पूरी तरह से बचता है।

अनुप्रयोग

ईलेनबर्ग-स्टीनरोड एक्सिओम्स

उच्छेदन प्रमेय को एलेनबर्ग-स्टीनरोड एक्सिओम्स में से एक माना जाता है।

मेयर-विएटोरिस अनुक्रम

मेयर-विएटोरिस अनुक्रम को उच्छेदन प्रमेय और लंबे-सटीक अनुक्रम के संयोजन से प्राप्त किया जा सकता है।[1]


होमोलॉजी के लिए निलंबन प्रमेय

होमोलॉजी के लिए निलंबन प्रमेय को प्राप्त करने के लिए उच्छेदन प्रमेय का उपयोग किया जा सकता है, जो कहता है सभी के लिए , कहाँ का निलंबन (टोपोलॉजी) है . [2]


आयाम का अपरिवर्तन

यदि गैर-रिक्त खुले सेट और समरूपी हैं, तो m = n. यह उच्छेदन प्रमेय, जोड़ी के लिए लंबे सटीक अनुक्रम का अनुसरण करता है , और तथ्य यह है कि विरूपण एक गोले पर वापस आ जाता है। विशेष रूप से, के लिए होमोमोर्फिक नहीं है अगर .[3]


यह भी देखें

संदर्भ

  1. See Hatcher 2002, p.149, for example
  2. See Hatcher 2002, p.132, for example
  3. See Hatcher 2002, p.135


ग्रन्थसूची

  • Joseph J. Rotman, An Introduction to Algebraic Topology, Springer-Verlag, ISBN 0-387-96678-1
  • Allen Hatcher, Algebraic Topology. Cambridge University Press, Cambridge, 2002.