त्रिगामा फलन: Difference between revisions
No edit summary |
|||
Line 2: | Line 2: | ||
{{For|3 चरों का बार्न्स का गामा फलन|त्रिगुण गामा फलन}} | {{For|3 चरों का बार्न्स का गामा फलन|त्रिगुण गामा फलन}} | ||
[[File:Psi1.png|right|thumb|300px|त्रिगामा | [[File:Psi1.png|right|thumb|300px|त्रिगामा फलन का रंग प्रतिनिधित्व, {{math|''ψ''<sub>1</sub>(''z'')}}, जटिल तल के एक आयताकार क्षेत्र में। यह [[डोमेन रंग]] विधि का उपयोग करके उत्पन्न होता है।]]गणित में, त्रिगामा फलन, जिसे {{math|''ψ''<sub>1</sub>(''z'')}} या {{math|''ψ''<sup>(1)</sup>(''z'')}} कहा जाता है, बहुगामा फलनों में से दूसरा है, और इसे इसके द्वारा परिभाषित किया गया है। | ||
: <math>\psi_1(z) = \frac{d^2}{dz^2} \ln\Gamma(z)</math>. | : <math>\psi_1(z) = \frac{d^2}{dz^2} \ln\Gamma(z)</math>. | ||
Line 9: | Line 9: | ||
: <math>\psi_1(z) = \frac{d}{dz} \psi(z)</math> | : <math>\psi_1(z) = \frac{d}{dz} \psi(z)</math> | ||
जहां {{math|''ψ''(''z'')}} [[डिगामा फ़ंक्शन]] है। इसे शृंखला के योग के रूप में भी परिभाषित किया जा सकता है। | जहां {{math|''ψ''(''z'')}} [[डिगामा फ़ंक्शन|डिगामा फलन]] है। इसे शृंखला के योग के रूप में भी परिभाषित किया जा सकता है। | ||
:::::::::::::::::::: <math> \psi_1(z) = \sum_{n = 0}^{\infty}\frac{1}{(z + n)^2}, </math> | :::::::::::::::::::: <math> \psi_1(z) = \sum_{n = 0}^{\infty}\frac{1}{(z + n)^2}, </math> | ||
इसे [[हर्विट्ज़ ज़ेटा फ़ंक्शन]] का एक विशेष स्तिथि बना दिया गया है। | इसे [[हर्विट्ज़ ज़ेटा फ़ंक्शन|हर्विट्ज़ ज़ेटा फलन]] का एक विशेष स्तिथि बना दिया गया है। | ||
: <math> \psi_1(z) = \zeta(2,z).</math> | : <math> \psi_1(z) = \zeta(2,z).</math> | ||
Line 32: | Line 32: | ||
===पुनरावृत्ति एवं परावर्तन सूत्र=== | ===पुनरावृत्ति एवं परावर्तन सूत्र=== | ||
त्रिगामा फलन | त्रिगामा फलन [[पुनरावृत्ति संबंध]] को संतुष्ट करता है | ||
: <math> \psi_1(z + 1) = \psi_1(z) - \frac{1}{z^2}</math> | : <math> \psi_1(z + 1) = \psi_1(z) - \frac{1}{z^2}</math> | ||
Line 59: | Line 59: | ||
{{math|''ψ''<sub>1</sub>}} के वास्तविक अक्ष पर कोई मूल नहीं हैं, लेकिन {{math|Re ''z'' < 0}} के लिए मूल {{math|''z<sub>n</sub>'', {{overline|''z<sub>n</sub>''}}}} के अनंत रूप से कई जोड़े उपस्थित हैं। मूल का ऐसा प्रत्येक युग्म संक्षिप रूप से {{math|Re ''z<sub>n</sub>'' {{=}} −''n'' + {{sfrac|1|2}}}} के समीप पहुंचता है और उनका काल्पनिक भाग {{mvar|n}} के साथ धीरे-धीरे लघुगणकीय रूप से बढ़ता है। उदाहरण के लिए, {{math|''z''<sub>1</sub> {{=}} −0.4121345... + 0.5978119...''i''}} और {{math|''z''<sub>2</sub> {{=}} −1.4455692... + 0.6992608...''i''}} के साथ पहले दो मूल {{math|Im(''z'') > 0}} हैं। | {{math|''ψ''<sub>1</sub>}} के वास्तविक अक्ष पर कोई मूल नहीं हैं, लेकिन {{math|Re ''z'' < 0}} के लिए मूल {{math|''z<sub>n</sub>'', {{overline|''z<sub>n</sub>''}}}} के अनंत रूप से कई जोड़े उपस्थित हैं। मूल का ऐसा प्रत्येक युग्म संक्षिप रूप से {{math|Re ''z<sub>n</sub>'' {{=}} −''n'' + {{sfrac|1|2}}}} के समीप पहुंचता है और उनका काल्पनिक भाग {{mvar|n}} के साथ धीरे-धीरे लघुगणकीय रूप से बढ़ता है। उदाहरण के लिए, {{math|''z''<sub>1</sub> {{=}} −0.4121345... + 0.5978119...''i''}} और {{math|''z''<sub>2</sub> {{=}} −1.4455692... + 0.6992608...''i''}} के साथ पहले दो मूल {{math|Im(''z'') > 0}} हैं। | ||
===क्लॉसन | ===क्लॉसन फलन से संबंध=== | ||
तर्कसंगत तर्कों पर डिगामा | तर्कसंगत तर्कों पर डिगामा फलन को डिगामा प्रमेय द्वारा त्रिकोणमितीय फलन और लघुगणक के संदर्भ में व्यक्त किया जा सकता है। एक समान परिणाम त्रिगामा फलन के लिए होता है लेकिन वृत्तीय फलन को क्लॉसन के फलन द्वारा प्रतिस्थापित किया जाता है। अर्थात,<ref>{{Cite book|title=बहु लघुगणक के संरचनात्मक गुण|editor-last=Lewin|editor-first=L. |publisher=American Mathematical Society|year=1991|isbn=978-0821816349}}</ref> | ||
:<math> | :<math> | ||
\psi_1\left(\frac{p}{q}\right)=\frac{\pi^2}{2\sin^2(\pi p/q)}+2q\sum_{m=1}^{(q-1)/2}\sin\left(\frac{2\pi mp}{q}\right)\textrm{Cl}_2\left(\frac{2\pi m}{q}\right). | \psi_1\left(\frac{p}{q}\right)=\frac{\pi^2}{2\sin^2(\pi p/q)}+2q\sum_{m=1}^{(q-1)/2}\sin\left(\frac{2\pi mp}{q}\right)\textrm{Cl}_2\left(\frac{2\pi m}{q}\right). | ||
Line 67: | Line 67: | ||
===गणना और सन्निकटन=== | ===गणना और सन्निकटन=== | ||
त्रिगामा फलन का अनुमान लगाने का एक आसान तरीका डिगामा | त्रिगामा फलन का अनुमान लगाने का एक आसान तरीका डिगामा फलन के स्पर्शोन्मुख विस्तार का व्युत्पन्न लेना है। | ||
:<math> \psi_1(x) \approx \frac{1}{x} + \frac{1}{2x^2} + \frac{1}{6x^3} - \frac{1}{30x^5} + \frac{1}{42x^7} - \frac{1}{30x^9} + \frac{5}{66x^{11}} - \frac{691}{2730x^{13}} + \frac{7}{6x^{15}}</math> | :<math> \psi_1(x) \approx \frac{1}{x} + \frac{1}{2x^2} + \frac{1}{6x^3} - \frac{1}{30x^5} + \frac{1}{42x^7} - \frac{1}{30x^9} + \frac{5}{66x^{11}} - \frac{691}{2730x^{13}} + \frac{7}{6x^{15}}</math> | ||
Line 81: | Line 81: | ||
* गामा फलन | * गामा फलन | ||
* | * डिगामा फलन | ||
* बहुपद फलन | * बहुपद फलन | ||
* कैटलन स्थिरांक | * कैटलन स्थिरांक |
Revision as of 10:09, 12 July 2023
गणित में, त्रिगामा फलन, जिसे ψ1(z) या ψ(1)(z) कहा जाता है, बहुगामा फलनों में से दूसरा है, और इसे इसके द्वारा परिभाषित किया गया है।
- .
इस परिभाषा से यह निष्कर्ष निकलता है कि
जहां ψ(z) डिगामा फलन है। इसे शृंखला के योग के रूप में भी परिभाषित किया जा सकता है।
इसे हर्विट्ज़ ज़ेटा फलन का एक विशेष स्तिथि बना दिया गया है।
ध्यान दें कि अंतिम दो सूत्र तब मान्य होते हैं जब 1 − z एक प्राकृतिक संख्या नहीं होती है।
गणना
उपरोक्त दिए गए विकल्पों के विकल्प के रूप में दोहरा अभिन्न प्रतिनिधित्व, श्रृंखला प्रतिनिधित्व से प्राप्त किया जा सकता है:
किसी ज्यामितीय श्रृंखला के योग के लिए सूत्र का उपयोग करना। y गुणनफल पर एकीकरण:
लॉरेंट श्रृंखला के रूप में एक असममित विस्तार है
यदि हमने B1 = 1/2 चुना है, अर्थात दूसरे प्रकार की बर्नौली संख्या हैं।
पुनरावृत्ति एवं परावर्तन सूत्र
त्रिगामा फलन पुनरावृत्ति संबंध को संतुष्ट करता है
और परावर्तन सूत्र
जो संक्षिप्त रूप में z =1/2 के लिए मान देता है।
विशेष मान
धनात्मक आधे पूर्णांक मानों पर हमारे पास वह है
इसके अतिरिक्त, त्रिगामा फलन में निम्नलिखित विशेष मान हैं:
जहाँ G कैटलन के स्थिरांक का प्रतिनिधित्व करता है।
ψ1 के वास्तविक अक्ष पर कोई मूल नहीं हैं, लेकिन Re z < 0 के लिए मूल zn, zn के अनंत रूप से कई जोड़े उपस्थित हैं। मूल का ऐसा प्रत्येक युग्म संक्षिप रूप से Re zn = −n + 1/2 के समीप पहुंचता है और उनका काल्पनिक भाग n के साथ धीरे-धीरे लघुगणकीय रूप से बढ़ता है। उदाहरण के लिए, z1 = −0.4121345... + 0.5978119...i और z2 = −1.4455692... + 0.6992608...i के साथ पहले दो मूल Im(z) > 0 हैं।
क्लॉसन फलन से संबंध
तर्कसंगत तर्कों पर डिगामा फलन को डिगामा प्रमेय द्वारा त्रिकोणमितीय फलन और लघुगणक के संदर्भ में व्यक्त किया जा सकता है। एक समान परिणाम त्रिगामा फलन के लिए होता है लेकिन वृत्तीय फलन को क्लॉसन के फलन द्वारा प्रतिस्थापित किया जाता है। अर्थात,[1]
गणना और सन्निकटन
त्रिगामा फलन का अनुमान लगाने का एक आसान तरीका डिगामा फलन के स्पर्शोन्मुख विस्तार का व्युत्पन्न लेना है।
उपस्थिति
त्रिगामा फलन इस योग सूत्र में प्रत्यक्ष होता है:[2]
यह भी देखें
- गामा फलन
- डिगामा फलन
- बहुपद फलन
- कैटलन स्थिरांक
टिप्पणियाँ
- ↑ Lewin, L., ed. (1991). बहु लघुगणक के संरचनात्मक गुण. American Mathematical Society. ISBN 978-0821816349.
- ↑ Mező, István (2013). "Some infinite sums arising from the Weierstrass Product Theorem". Applied Mathematics and Computation. 219 (18): 9838–9846. doi:10.1016/j.amc.2013.03.122.
संदर्भ
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions, (1964) Dover Publications, New York. ISBN 0-486-61272-4. See section §6.4
- Eric W. Weisstein. Trigamma Function -- from MathWorld--A Wolfram Web Resource