कोहोमोटोपी समुच्चय: Difference between revisions
m (Sugatha moved page कोहोमोटोपी सेट to कोहोमोटोपी समुच्चय without leaving a redirect) |
No edit summary |
||
Line 1: | Line 1: | ||
गणित में, विशेष रूप से [[बीजगणितीय टोपोलॉजी|बीजगणितीय संस्थिति]] में, '''कोहोमोटोपी''' ('''कोहोमोटोपी) समुच्चय''' अंकित संस्थिति समष्टि की [[श्रेणी (गणित)]] और आधारबिंदु-संरक्षित निरंतर फलन (संस्थिति) मानचित्रों से लेकर [[सेट (गणित)|समुच्चय (गणित)]] और [[फ़ंक्शन (गणित)|फलन (गणित)]] की श्रेणी तक विशेष [[श्रेणी सिद्धांत]] हैं। वे [[समरूप समूह]] के लिए [[द्वैत (गणित)]] हैं, लेकिन उनका अध्ययन कम किया गया हैं। | |||
गणित में, विशेष रूप से [[बीजगणितीय टोपोलॉजी|बीजगणितीय संस्थिति]] में, ''' | |||
==अवलोकन== | ==अवलोकन== | ||
अंकित [[टोपोलॉजिकल स्पेस|संस्थिति स्थान]] ''X'' के p-वें | अंकित [[टोपोलॉजिकल स्पेस|संस्थिति स्थान]] ''X'' के p-वें कोहोमोटोपी समुच्चय को परिभाषित किया गया है | ||
:<math>\pi^p(X) = [X,S^p]</math> | :<math>\pi^p(X) = [X,S^p]</math> | ||
निरंतर मापन के अंकित [[होमोटॉपी|समरूप]] वर्गों का समुच्चय <math>X</math> p-[[ अति क्षेत्र | | निरंतर मापन के अंकित [[होमोटॉपी|समरूप]] वर्गों का समुच्चय <math>X</math> p- [[ अति क्षेत्र |वृत्त]] के लिए <math>S^p</math> होता हैं। p = 1 के लिए इस समुच्चय में [[एबेलियन समूह]] संरचना है, और, इसके अतिरिक्त <math>X</math> [[सीडब्ल्यू-कॉम्प्लेक्स|सीडब्ल्यू-समिश्र]] है, पहले[[ सह-समरूपता | कोहोमोटोपीता]] समूह के लिए [[समूह समरूपता|समूह समरूप]] <math>H^1(X)</math> है, चुकी वृत्त <math>S^1</math> ईलेनबर्ग-मैकलेन <math>K(\mathbb{Z},1)</math> प्रकार का स्थान है। वास्तव में, यह [[हेंज हॉफ]] का प्रमेय है कि यदि <math>X</math> तब अधिकतम p आयाम का सीडब्ल्यू-समिश्र है तब <math>[X,S^p]</math> p-वें सह समरूप समूह <math>H^p(X)</math> द्विभाज्य है। | ||
समुच्चय <math>[X,S^p]</math> प्राकृतिक [[समूह (गणित)]] संरचना भी है यदि <math>X</math> स्थगन <math>\Sigma Y</math> है, जैसे कि गोला <math>S^q</math> के लिए <math>q \ge 1</math> होता हैं। | समुच्चय <math>[X,S^p]</math> प्राकृतिक [[समूह (गणित)]] संरचना भी है यदि <math>X</math> स्थगन <math>\Sigma Y</math> है, जैसे कि गोला <math>S^q</math> के लिए <math>q \ge 1</math> होता हैं। | ||
यदि X, सीडब्ल्यू-समिश्र के समतुल्य समरूप नहीं है, तो हो सकता है कि <math>H^1(X)</math> <math>[X,S^1]</math> के समरूप नहीं होता हैं। [[वारसॉ सर्कल|वारसॉ वृत्त]] द्वारा प्रति-उदाहरण दिया गया है, जिसका पहला सह समरूप समूह समाप्त हो जाता है, लेकिन मानचित्र <math>S^1</math>को स्वीकार करता है जो स्थिर मानचित्र के लिए समरूपी नहीं है।<ref>[http://math.ucr.edu/~res/math205B-2012/polishcircle.pdf Polish Circle]. Retrieved July 17, 2014.</ref> | यदि X, सीडब्ल्यू-समिश्र के समतुल्य समरूप नहीं है, तो हो सकता है कि <math>H^1(X)</math> <math>[X,S^1]</math> के समरूप नहीं होता हैं। [[वारसॉ सर्कल|वारसॉ वृत्त]] द्वारा प्रति-उदाहरण दिया गया है, जिसका पहला सह समरूप समूह समाप्त हो जाता है, लेकिन मानचित्र <math>S^1</math>को स्वीकार करता है जो स्थिर मानचित्र के लिए समरूपी नहीं है।<ref>[http://math.ucr.edu/~res/math205B-2012/polishcircle.pdf Polish Circle]. Retrieved July 17, 2014.</ref> | ||
==गुण== | ==गुण== | ||
सह समरूप समुच्चय के बारे में कुछ आधारभूत तथ्य, कुछ दूसरों की तुलना में अधिक स्पष्ट: | सह समरूप समुच्चय के बारे में कुछ आधारभूत तथ्य, कुछ दूसरों की तुलना में अधिक स्पष्ट: | ||
Line 30: | Line 26: | ||
{{Reflist}} | {{Reflist}} | ||
{{DEFAULTSORT:Cohomotopy Group}}[[Category: समरूपता सिद्धांत]] | {{DEFAULTSORT:Cohomotopy Group}}[[Category: समरूपता सिद्धांत]] | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 08/07/2023]] | [[Category:Created On 08/07/2023]] |
Revision as of 12:51, 14 July 2023
गणित में, विशेष रूप से बीजगणितीय संस्थिति में, कोहोमोटोपी (कोहोमोटोपी) समुच्चय अंकित संस्थिति समष्टि की श्रेणी (गणित) और आधारबिंदु-संरक्षित निरंतर फलन (संस्थिति) मानचित्रों से लेकर समुच्चय (गणित) और फलन (गणित) की श्रेणी तक विशेष श्रेणी सिद्धांत हैं। वे समरूप समूह के लिए द्वैत (गणित) हैं, लेकिन उनका अध्ययन कम किया गया हैं।
अवलोकन
अंकित संस्थिति स्थान X के p-वें कोहोमोटोपी समुच्चय को परिभाषित किया गया है
निरंतर मापन के अंकित समरूप वर्गों का समुच्चय p- वृत्त के लिए होता हैं। p = 1 के लिए इस समुच्चय में एबेलियन समूह संरचना है, और, इसके अतिरिक्त सीडब्ल्यू-समिश्र है, पहले कोहोमोटोपीता समूह के लिए समूह समरूप है, चुकी वृत्त ईलेनबर्ग-मैकलेन प्रकार का स्थान है। वास्तव में, यह हेंज हॉफ का प्रमेय है कि यदि तब अधिकतम p आयाम का सीडब्ल्यू-समिश्र है तब p-वें सह समरूप समूह द्विभाज्य है।
समुच्चय प्राकृतिक समूह (गणित) संरचना भी है यदि स्थगन है, जैसे कि गोला के लिए होता हैं।
यदि X, सीडब्ल्यू-समिश्र के समतुल्य समरूप नहीं है, तो हो सकता है कि के समरूप नहीं होता हैं। वारसॉ वृत्त द्वारा प्रति-उदाहरण दिया गया है, जिसका पहला सह समरूप समूह समाप्त हो जाता है, लेकिन मानचित्र को स्वीकार करता है जो स्थिर मानचित्र के लिए समरूपी नहीं है।[1]
गुण
सह समरूप समुच्चय के बारे में कुछ आधारभूत तथ्य, कुछ दूसरों की तुलना में अधिक स्पष्ट:
- सभी p और q के लिए होता हैं।
- और के लिए, समूह के बराबर होता हैं। (इस परिणाम को सिद्ध करने के लिए, लेव पोंट्रीगिन ने फ़्रेमयुक्त सह-बॉर्डिज्म की अवधारणा विकसित की थी।)
- यदि के पास सभी x के लिए हैं, फिर , और यदि f और g होते हैं तो समरूपता सहज होती हैं।
- के लिए विविध सहज संकुचित स्थान सुचारू फलन मानचित्रों के समरूप वर्गों के समुच्चय के लिए समरूप है; इस स्थिति में, प्रत्येक सतत मानचित्र को सहज मानचित्र द्वारा समान रूप से अनुमानित किया जा सकता है और कोई भी समरूप सुचारू मानचित्र सुचारू रूप से समरूप होता हैं।
- यदि -तो फिर विविध हैं, तो के लिए होता हैं।
- यदि -सीमा में विविध हैं, तो समुच्चय आंतरिक (टोपोलॉजी) के विहित p-फ़्रेमयुक्त सह विविध के सह बॉर्डिज़्म वर्गों के समुच्चय के साथ द्विभाजित में प्राकृतिक समरूपता है।
- का स्थिर सह समरूप समूह सह सिमित है।
- जो एक एबेलियन समूह है।
संदर्भ
- ↑ Polish Circle. Retrieved July 17, 2014.