अनैच्छिक आव्यूह: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 103: Line 103:


==गुण==
==गुण==
एक यौगिकता [[दोषपूर्ण मैट्रिक्स|दोषपूर्ण आव्यूह]] होता है | गैर-दोषपूर्ण, और प्रत्येक [[आइगेनवैल्यूज़ एवं आइगेनवेक्टर्स]] बराबर होते हैं <math>\pm 1</math>, तो हस्ताक्षर आव्यूह के लिए समावेशन विकर्ण आव्यूह होता है ।
एक यौगिकता [[दोषपूर्ण मैट्रिक्स|दोषपूर्ण आव्यूह]] होता है | गैर-दोषपूर्ण, और प्रत्येक अभिलक्षणिक मान [[आइगेनवैल्यूज़ एवं आइगेनवेक्टर्स|एवं अभिलक्षणिक सदिश]] बराबर होते हैं <math>\pm 1</math>, तो हस्ताक्षर आव्यूह के लिए समावेशन विकर्ण आव्यूह होता है ।


एक [[सामान्य मैट्रिक्स|सामान्य आव्यूह]] अनैच्छिक [[हर्मिटियन मैट्रिक्स|हर्मिटियन आव्यूह]] (जटिल) या सममित (वास्तविक) और [[एकात्मक मैट्रिक्स|एकात्मक आव्यूह]] (जटिल) या ऑर्थोगोनल (वास्तविक) भी होता है।
एक [[सामान्य मैट्रिक्स|सामान्य आव्यूह]] अनैच्छिक [[हर्मिटियन मैट्रिक्स|हर्मिटियन आव्यूह]] (जटिल) या सममित (वास्तविक) और [[एकात्मक मैट्रिक्स|एकात्मक आव्यूह]] (जटिल) या ऑर्थोगोनल (वास्तविक) भी होता है।
Line 120: Line 120:
  | year = 2009}}.</ref>
  | year = 2009}}.</ref>


यदि '''A''' एक ''n'' × ''n'' आव्यूह होता है, तो '''A''' अनिवार्य है यदि '''P'''<sub>+</sub>= (I+'''A''')/2 [[निष्क्रिय मैट्रिक्स|निष्क्रिय आव्यूह]] होता है। यह संबंध अनैच्छिक आव्यूहों और निष्क्रिय आव्यूहों के बीच आपत्ति देता है।<ref name="bernstein" />इसी प्रकार''', A''' अनैच्छिक है यदि '''P'''<sub>−</sub>= (I − '''A''')/2 निष्क्रिय आव्यूह होता है। ये दो संचालक सममित और प्रतिसममिति अनुमान बनाते हैं <math>v_\pm = P_\pm v</math> सदिश का <math>v = v_+ + v_-</math> अनैच्छिक '''A''' के संबंध में, इस अर्थ में <math>Av_\pm = \pm v_\pm</math>, या <math>A P_\pm = \pm P_\pm</math>. यही निर्माण किसी भी यौगिकता (गणित) पर लागू होता है, जैसे कि जटिल संयुग्म (वास्तविक और काल्पनिक भाग), [[ खिसकाना | खिसकाना]] (सममित और प्रतिसममिति आव्यूह), और [[हर्मिटियन सहायक]] (हर्मिटियन आव्यूह और [[स्क्यू-हर्मिटियन मैट्रिक्स|स्क्यू-हर्मिटियन आव्यूह]] होता है |  
यदि '''A''' एक ''n'' × ''n'' आव्यूह होता है, तो '''A''' अनिवार्य है यदि '''P'''<sub>+</sub>= (I+'''A''')/2 [[निष्क्रिय मैट्रिक्स|निष्क्रिय आव्यूह]] होता है। यह संबंध अनैच्छिक आव्यूहों और निष्क्रिय आव्यूहों के बीच आपत्ति देता है।<ref name="bernstein" />इसी प्रकार''', A''' अनैच्छिक है यदि '''P'''<sub>−</sub>= (I − '''A''')/2 निष्क्रिय आव्यूह होता है। ये दो संचालक सममित और प्रतिसममिति अनुमान बनाते हैं <math>v_\pm = P_\pm v</math> सदिश का <math>v = v_+ + v_-</math> अनैच्छिक '''A''' के संबंध में, इस अर्थ में <math>Av_\pm = \pm v_\pm</math>, या <math>A P_\pm = \pm P_\pm</math>. यही निर्माण किसी भी यौगिकता (गणित) पर क्रियान्वित होता है, जैसे कि जटिल संयुग्म (वास्तविक और काल्पनिक भाग), [[ खिसकाना | खिसकाना]] (सममित और प्रतिसममिति आव्यूह), और [[हर्मिटियन सहायक]] (हर्मिटियन आव्यूह और विषम[[स्क्यू-हर्मिटियन मैट्रिक्स|-हर्मिटियन आव्यूह]] होता है |  


यदि '''A''', M(''n'', '''R''') में एक अनैच्छिक आव्यूह है, जो वास्तविक संख्याओं पर आव्यूह [[मैट्रिक्स बीजगणित|बीजगणित]] है, और '''A''', '''I''' का अदिश गुणज नहीं है, तो [[उपबीजगणित]] {{mset|''x''&thinsp;'''I''' + ''y''&thinsp;'''A''': ''x'',&thinsp;''y'' ∈ '''R'''}} [[जनरेटर (गणित)]] '''A''' [[विभाजित-जटिल संख्या]]ओं के लिए [[समरूपी]] है।
यदि '''A''', M(''n'', '''R''') में एक अनैच्छिक आव्यूह है, जो वास्तविक संख्याओं पर आव्यूह [[मैट्रिक्स बीजगणित|बीजगणित]] है, और '''A''', '''I''' का अदिश गुणज नहीं है, तो [[उपबीजगणित]] {{mset|''x''&thinsp;'''I''' + ''y''&thinsp;'''A''': ''x'',&thinsp;''y'' ∈ '''R'''}} जनित्र [[जनरेटर (गणित)|(गणित)]] '''A''' [[विभाजित-जटिल संख्या]]ओं के लिए [[समरूपी]] है।


यदि '''A''' और '''B''' दो अनैच्छिक आव्यूह हैं जो एक दूसरे के साथ आव्यूहों का परिवर्तन करते हैं (अर्थात '''AB''' = '''BA''') तो '''AB''' भी अनैच्छिक है।
यदि '''A''' और '''B''' दो अनैच्छिक आव्यूह हैं जो एक दूसरे के साथ आव्यूहों का परिवर्तन करते हैं (अर्थात '''AB''' = '''BA''') तो '''AB''' भी अनैच्छिक होता है।


यदि '''A''' एक अनैच्छिक आव्यूह है तो '''A''' के आव्यूह का प्रत्येक [[पूर्णांक]] आव्यूह गुणन शक्तियाँ अनैच्छिक है। '''A''' <sup>[[समता (गणित)]] है तो</sup> <big><sub>'''A'''</sub><sup>n</sup></big> के ​​बराबर होगा और यदि n समता (गणित) है तो  <big>I</big> के बराबर होता है।
यदि '''A''' एक अनैच्छिक आव्यूह है तो '''A''' के आव्यूह का प्रत्येक [[पूर्णांक]] आव्यूह गुणन शक्तियाँ अनैच्छिक है। '''A''' <sup>[[समता (गणित)]] है तो</sup> <big><sub>'''A'''</sub><sup>n</sup></big> के ​​बराबर होगा और यदि n समता (गणित) है तो  <big>I</big> के बराबर होता है।


==यह भी देखें==
==यह भी देखें==
*अफ़िन इन्वॉल्वमेंट
*सजातीय अनैच्छिक


==संदर्भ==
==संदर्भ==

Revision as of 20:51, 16 July 2023

गणित में, अनैच्छिक आव्यूह एक [[उलटा आव्यूह] है जो कि इसका अपना व्युत्क्रम आव्यूह है। अर्थात्,आव्यूह A द्वारा गुणा यौगिकता (गणित) है यदि A2 = I, जहां I n × n पहचान आव्यूह है। अनैच्छिक आव्यूह पहचान आव्यूह के सभी आव्यूह के वर्गमूल हैं। यह इस तथ्य का परिणाम है कि किसी भी व्युत्क्रमणीय आव्यूह को उसके व्युत्क्रम से गुणा करने पर पहचान प्राप्त होती है।[1]


उदाहरण

2 × 2 वास्तविक संख्या आव्यूह अनिवार्य है बशर्ते कि [2]

M(2, C) में पॉल के आव्यूह अनैच्छिक होता हैं:

प्राथमिक आव्यूह के तीन वर्गों में से एक अनैच्छिक है, अर्थात् पंक्ति-बदलाव प्राथमिक आव्यूह होता है। प्रारंभिक आव्यूह अन्य वर्ग का विशेष मामला, जो पंक्ति या स्तंभ को -1 से गुणा करने का प्रतिनिधित्व करता है, यह अनैच्छिक होता है; यह वास्तव में हस्ताक्षर आव्यूह का तुच्छ उदाहरण है, जो सभी अनिवार्य होता हैं।

अनैच्छिक आव्यूहों के कुछ सरल उदाहरण नीचे दिखाए गए हैं।

कहाँ

  • I 3 × 3 पहचान आव्यूह होता है (जो तुच्छ रूप से अनिवार्य है);
  • R, परस्पर बदली हुई पंक्तियों की एक जोड़ी के साथ 3 × 3 पहचान आव्यूह होता है;
  • S एक हस्ताक्षर आव्यूह होता है।

ब्लॉकों की रैखिक स्वतंत्रता के परिणामस्वरूप, अनैच्छिक आव्यूह से निर्मित कोई भी ब्लॉक-विकर्ण आव्यूह अनैच्छिक होता है।

समरूपता

एक अनैच्छिक आव्यूह जो सममित आव्यूह होता है, ऑर्थोगोनल आव्यूह होता है, और इस प्रकार सममिति (एक रैखिक परिवर्तन जो यूक्लिडियन दूरी को संरक्षित करता है) का प्रतिनिधित्व करता है। इसके विपरीत प्रत्येक ऑर्थोगोनल अनैच्छिक आव्यूह सममित होता है।[3]

इसके विशेष मामले के रूप में, प्रत्येक परावर्तन (रैखिक बीजगणित) और 180° घूर्णन आव्यूह अनैच्छिक होता है।

गुण

एक यौगिकता दोषपूर्ण आव्यूह होता है | गैर-दोषपूर्ण, और प्रत्येक अभिलक्षणिक मान एवं अभिलक्षणिक सदिश बराबर होते हैं , तो हस्ताक्षर आव्यूह के लिए समावेशन विकर्ण आव्यूह होता है ।

एक सामान्य आव्यूह अनैच्छिक हर्मिटियन आव्यूह (जटिल) या सममित (वास्तविक) और एकात्मक आव्यूह (जटिल) या ऑर्थोगोनल (वास्तविक) भी होता है।

किसी भी क्षेत्र (गणित) पर अनैच्छिक आव्यूह का निर्धारक ±1होता है।[4]

यदि A एक n × n आव्यूह होता है, तो A अनिवार्य है यदि P+= (I+A)/2 निष्क्रिय आव्यूह होता है। यह संबंध अनैच्छिक आव्यूहों और निष्क्रिय आव्यूहों के बीच आपत्ति देता है।[4]इसी प्रकार, A अनैच्छिक है यदि P= (I − A)/2 निष्क्रिय आव्यूह होता है। ये दो संचालक सममित और प्रतिसममिति अनुमान बनाते हैं सदिश का अनैच्छिक A के संबंध में, इस अर्थ में , या . यही निर्माण किसी भी यौगिकता (गणित) पर क्रियान्वित होता है, जैसे कि जटिल संयुग्म (वास्तविक और काल्पनिक भाग), खिसकाना (सममित और प्रतिसममिति आव्यूह), और हर्मिटियन सहायक (हर्मिटियन आव्यूह और विषम-हर्मिटियन आव्यूह होता है |

यदि A, M(n, R) में एक अनैच्छिक आव्यूह है, जो वास्तविक संख्याओं पर आव्यूह बीजगणित है, और A, I का अदिश गुणज नहीं है, तो उपबीजगणित {xI + yA: x, yR} जनित्र (गणित) A विभाजित-जटिल संख्याओं के लिए समरूपी है।

यदि A और B दो अनैच्छिक आव्यूह हैं जो एक दूसरे के साथ आव्यूहों का परिवर्तन करते हैं (अर्थात AB = BA) तो AB भी अनैच्छिक होता है।

यदि A एक अनैच्छिक आव्यूह है तो A के आव्यूह का प्रत्येक पूर्णांक आव्यूह गुणन शक्तियाँ अनैच्छिक है। A समता (गणित) है तो An के ​​बराबर होगा और यदि n समता (गणित) है तो I के बराबर होता है।

यह भी देखें

  • सजातीय अनैच्छिक

संदर्भ

  1. Higham, Nicholas J. (2008), "6.11 Involutory Matrices", Functions of Matrices: Theory and Computation, Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), pp. 165–166, doi:10.1137/1.9780898717778, ISBN 978-0-89871-646-7, MR 2396439.
  2. Peter Lancaster & Miron Tismenetsky (1985) The Theory of Matrices, 2nd edition, pp 12,13 Academic Press ISBN 0-12-435560-9
  3. Govaerts, Willy J. F. (2000), Numerical methods for bifurcations of dynamical equilibria, Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), p. 292, doi:10.1137/1.9780898719543, ISBN 0-89871-442-7, MR 1736704.
  4. 4.0 4.1 Bernstein, Dennis S. (2009), "3.15 Facts on Involutory Matrices", Matrix Mathematics (2nd ed.), Princeton, NJ: Princeton University Press, pp. 230–231, ISBN 978-0-691-14039-1, MR 2513751.