विडलर विद्युत धारा स्रोत: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 8: Line 8:


== डीसी विश्लेषण ==
== डीसी विश्लेषण ==
[[File:Widlar Current Source.PNG|thumb|250px|चित्र 1: बाइपोलर ट्रांजिस्टर का उपयोग करते हुए विडलर करंट स्रोत का एक संस्करण।]]चित्रा 1 द्विध्रुवी ट्रांजिस्टर का उपयोग करते हुए विडलर वर्तमान स्रोत का उदाहरण है, जहां उत्सर्जक रोकनेवाला आर<sub>2</sub> आउटपुट ट्रांजिस्टर क्यू से जुड़ा है<sub>2</sub>, और क्यू में वाहक को कम करने का प्रभाव है<sub>2</sub> क्यू के सापेक्ष<sub>1</sub>. इस सर्किट की कुंजी यह है कि प्रतिरोधक आर के पार वोल्टेज गिरता है<sub>2</sub> ट्रांजिस्टर क्यू के आधारित उत्सर्जन वोल्टेज से घटाता है<sub>2</sub>, जिससे इस ट्रांजिस्टर को ट्रांजिस्टर क्यू की तुलना में समाप्त कर दिया जाता है<sub>1</sub>. यह अवलोकन चित्र 1 में परिपथ के दोनों ओर पाए जाने वाले आधार वोल्टेज अभिव्यक्ति की बराबरी करके व्यक्त किया गया है:
[[File:Widlar Current Source.PNG|thumb|250px|चित्र 1: बाइपोलर ट्रांजिस्टर का उपयोग करते हुए विडलर करंट स्रोत का एक संस्करण।]]चित्रा 1 द्विध्रुवी ट्रांजिस्टर का उपयोग करते हुए विडलर वर्तमान स्रोत का उदाहरण है, जहां उत्सर्जक रोकनेवाला आर<sub>2</sub> आउटपुट ट्रांजिस्टर क्यू से जुड़ा है<sub>2</sub>, और क्यू में वर्तमान को कम करने का प्रभाव है<sub>2</sub> क्यू के सापेक्ष<sub>1</sub>. इस परिपथ की कुंजी यह है कि प्रतिरोधक आर के पार वोल्टेज गिरता है<sub>2</sub> ट्रांजिस्टर क्यू के आधारित उत्सर्जन वोल्टेज से घटाता है<sub>2</sub>, जिससे इस ट्रांजिस्टर को ट्रांजिस्टर क्यू की तुलना में समाप्त कर दिया जाता है<sub>1</sub>. यह अवलोकन चित्र 1 में परिपथ के दोनों ओर पाए जाने वाले आधार वोल्टेज अभिव्यक्ति की बराबरी करके व्यक्त किया गया है:


:<math>\begin{align}
:<math>\begin{align}
Line 14: Line 14:
   \Rightarrow {} &\frac{1}{R_2}\left(V_{BE1} - V_{BE2}\right) = (\beta_2 + 1)I_{B2}\ ,
   \Rightarrow {} &\frac{1}{R_2}\left(V_{BE1} - V_{BE2}\right) = (\beta_2 + 1)I_{B2}\ ,
\end{align}</math>
\end{align}</math>
जहां बी<sub>2</sub> उत्पादन ट्रांजिस्टर का बीटा-मान है, जो इनपुट ट्रांजिस्टर के समान नहीं है, आंशिक रूप से क्योंकि दो ट्रांजिस्टर में धाराएं बहुत भिन्न हैं।<ref name=Gray2>{{cite book |title=Figure 2.38, p. 115 |author=PR Gray, PJ Hurst, SH Lewis & RG Meyer |year=2001  |isbn=0-471-32168-0 |url=http://www.worldcat.org/search?q=0471321680&qt=owc_search }}</ref> चर I<sub>B2</sub> उत्पादन ट्रांजिस्टर, V का आधार वाहक है<sub>BE</sub> आधारित उत्सर्जन वोल्टेज को संदर्भित करता है। इस समीकरण का अर्थ है (शॉकली द्विधुवी समीकरण का उपयोग करके):
जहां बी<sub>2</sub> उत्पादन ट्रांजिस्टर का बीटा-मान है, जो इनपुट ट्रांजिस्टर के समान नहीं है, आंशिक रूप से क्योंकि दो ट्रांजिस्टर में धाराएं बहुत भिन्न हैं।<ref name=Gray2>{{cite book |title=Figure 2.38, p. 115 |author=PR Gray, PJ Hurst, SH Lewis & RG Meyer |year=2001  |isbn=0-471-32168-0 |url=http://www.worldcat.org/search?q=0471321680&qt=owc_search }}</ref> चर I<sub>B2</sub> उत्पादन ट्रांजिस्टर, V का आधार वर्तमान है<sub>BE</sub> आधारित उत्सर्जन वोल्टेज को संदर्भित करता है। इस समीकरण का अर्थ है (शॉकली द्विधुवी समीकरण का उपयोग करके):


सम। 1{{anchor|Eq1}}
सम। 1{{anchor|Eq1}}
Line 26: Line 26:


== निर्दिष्ट धाराओं के साथ डिजाइन प्रक्रिया ==
== निर्दिष्ट धाराओं के साथ डिजाइन प्रक्रिया ==
दर्पण को बनाने करने के लिए, उत्पादन वाहक को दो प्रतिरोधक मान आर से संबंधित होना चाहिए<sub>1</sub> और आर<sub>2</sub>. एक बुनियादी अवलोकन यह है कि आउटपुट ट्रांजिस्टर बाइपोलर रेलमार्गसंयोग ट्रांजिस्टर # संचालन के क्षेत्रों में केवल तभी तक होता है जब तक इसका संग्रहकर्ता आधारित वोल्टेज गैर-शून्य होता है। इस प्रकार, दर्पण के बनाने के लिए सबसे सरल पूर्वाग्रह स्थिति लागू वोल्टेज वी संग्रह करती है<sub>A</sub> बेस वोल्टेज वी के बराबर करने के लिए<sub>B</sub>. वी का यह न्यूनतम उपयोगी मूल्य<sub>A</sub> वर्तमान दर्पण # वर्तमान स्रोत का अनुपालन वोल्टेज कहा जाता है। उस पूर्वाग्रह की स्थिति के साथ, [[प्रारंभिक प्रभाव]] बनावट में कोई भूमिका नहीं निभाता है।<ref name=note1>Of course, one might imagine a design where the output resistance of the mirror is a major consideration. Then a different approach is necessary.</ref>
दर्पण को बनाने करने के लिए, उत्पादन वर्तमान  को दो प्रतिरोधक मान आर से संबंधित होना चाहिए<sub>1</sub> और आर<sub>2</sub>. एक बुनियादी अवलोकन यह है कि आउटपुट ट्रांजिस्टर बाइपोलर रेलमार्गसंयोग ट्रांजिस्टर # संचालन के क्षेत्रों में केवल तभी तक होता है जब तक इसका संग्रहकर्ता आधारित वोल्टेज गैर-शून्य होता है। इस प्रकार, दर्पण के बनाने के लिए सबसे सरल पूर्वाग्रह स्थिति लागू वोल्टेज वी संग्रह करती है<sub>A</sub> बेस वोल्टेज वी के बराबर करने के लिए<sub>B</sub>. वी का यह न्यूनतम उपयोगी मूल्य<sub>A</sub> वर्तमान दर्पण # वर्तमान स्रोत का अनुपालन वोल्टेज कहा जाता है। उस पूर्वाग्रह की स्थिति के साथ, [[प्रारंभिक प्रभाव]] बनावट में कोई भूमिका नहीं निभाता है।<ref name=note1>Of course, one might imagine a design where the output resistance of the mirror is a major consideration. Then a different approach is necessary.</ref>


ये विचार निम्नलिखित डिजाइन प्रक्रिया का सुझाव देते हैं:
ये विचार निम्नलिखित डिजाइन प्रक्रिया का सुझाव देते हैं:
Line 77: Line 77:


== आउटपुट प्रतिबाधा ==
== आउटपुट प्रतिबाधा ==
[[File:Widlar small-signal.PNG|thumb|350px |चित्रा 2: चित्रा 1 में दिखाए गए विडलर स्रोत के आउटपुट प्रतिरोध को खोजने के लिए लघु-संकेत सर्किट। एक परीक्षण वर्तमान I<sub>x</sub> आउटपुट पर लगाया जाता है, और आउटपुट प्रतिरोध तब R होता है<sub>O</sub> = वी<sub>x</sub> / मैं<sub>x</sub>.]]वर्तमान स्रोत की महत्वपूर्ण संपत्ति इसका छोटा संकेत वृद्धिशील आउटपुट प्रतिबाधा है, जो आदर्श रूप से अनंत होना चाहिए। विडलर परिपथ              ट्रांजिस्टर के लिए स्थानीय वाहक प्रतिपुस्टि पेश करता है <math>\scriptstyle Q_{2}</math>. क्यू में वर्तमान में कोई वृद्धि<sub>2</sub> आर भर में वोल्टेज ड्रॉप बढ़ाता है<sub>2</sub>, वी को कम करना<sub>BE</sub> क्यू के लिए<sub>2</sub>, जिससे वाहक में वृद्धि का मुकाबला किया जा सके। इस प्रतिक्रिया का मतलब है कि परिपथ का आउटपुट प्रतिबाधा बढ़ गया है, क्योंकि प्रतिक्रिया में आर सम्मिलित है<sub>2</sub> किसी दिए गए वाहक को चलाने के लिए एक बड़े वोल्टेज का उपयोग करने के लिए मजबूर करता है।
[[File:Widlar small-signal.PNG|thumb|350px |चित्रा 2: चित्रा 1 में दिखाए गए विडलर स्रोत के आउटपुट प्रतिरोध को खोजने के लिए लघु-संकेत सर्किट। एक परीक्षण वर्तमान I<sub>x</sub> आउटपुट पर लगाया जाता है, और आउटपुट प्रतिरोध तब R होता है<sub>O</sub> = वी<sub>x</sub> / मैं<sub>x</sub>.]]वर्तमान स्रोत की महत्वपूर्ण संपत्ति इसका छोटा संकेत वृद्धिशील आउटपुट प्रतिबाधा है, जो आदर्श रूप से अनंत होना चाहिए। विडलर परिपथ              ट्रांके लिस्थानीजिस्टर ए य वर्तमान प्रतिपुस्टि पेश करता है <math>\scriptstyle Q_{2}</math>. क्यू में वर्तमान में कोई वृद्धि<sub>2</sub> आर भर में वोल्टेज ड्रॉप बढ़ाता है<sub>2</sub>, वी को कम करना<sub>BE</sub> क्यू के लिए<sub>2</sub>, जिससे वर्तमान में वृद्धि का मुकाबला  


परिपथ के लिए एक छोटे-संकेत प्रतिमान का उपयोग करके आउटपुट प्रतिरोध पाया जाता है, चित्र 2 में दिखाया गया है। ट्रांजिस्टर क्यू<sub>1</sub> इसके छोटे-संकेत उत्सर्जक प्रतिरोध आर द्वारा प्रतिस्थापित किया जाता है<sub>E</sub> क्योंकि यह द्विधुवी जुड़ा हुआ है।<ref name=diode>In a ''diode-connected transistor'' the collector is short-circuited to the base, so the transistor collector-base junction has no time-varying voltage across it. As a result, the transistor behaves like the base-emitter diode, which at low frequencies has a small-signal circuit that is simply the resistor ''r''<sub>E</sub> = ''V''<sub>T</sub> / ''I''<sub>E</sub>, with ''I''<sub>E</sub> the DC [[Q-point]] emitter current. See [[Diode modelling#Small-signal modeling|diode small-signal circuit]].</ref> ट्रांजिस्टर Q<sub>2</sub> इसके [[ हाइब्रिड-पाई मॉडल | हाइब्रिड-पाई प्रतिमान]] के साथ बदल दिया गया है। एक परीक्षण वर्तमान है I<sub>x</sub> आउटपुट पर संलग्न है।
परिपथ के लिए एक छोटे-संकेत प्रतिमान का उपयोग करके आउटपुट प्रतिरोध पाया जार क्यू<sub>1</sub> इसके छोटे-संकेत उत्सर्जक प्रतिरोध आर द्वारा प्रतिस्थापित किया जाता है<sub>E</sub> क्योंकि यह द्विधुवी जुड़ा हुआ है।<ref name=diode>In a ''diode-connected transistor'' the collector is short-circuited to the base, so the transistor collector-base junction has no time-varying voltage across it. As a result, the transistor behaves like the base-emitter diode, which at low frequencies has a small-signal circuit that is simply the resistor ''r''<sub>E</sub> = ''V''<sub>T</sub> / ''I''<sub>E</sub>, with ''I''<sub>E</sub> the DC [[Q-point]] emitter current. See [[Diode modelling#Small-signal modeling|diode small-signal circuit]].</ref> ट्रांजिस्टर Qकिया जा सकता है। इस प्रतिक्रिया का मतलब है कि परिपथ का आउटपुट प्रतिबाधा बढ़ गया है, क्योंकि प्रतिक्रिया में आर सम्मिलित है<sub>2</sub> किसी दिए गए वर्तमान को चलाने के लिए एक बड़े वोल्टेज का उपयोग करने के लिए मजबूर करता है।ता है, चित्र 2 में दिखाया गया है। ट्रांजिस्ट<sub>2</sub> इसके [[ हाइब्रिड-पाई मॉडल | हाइब्रिड-पाई प्रतिमान]] के साथ बदल दिया गया है। एक परीक्षण वर्तमान है I<sub>x</sub> आउटपुट पर संलग्न है।


आकृति का उपयोग करते हुए, किरचॉफ के नियमों का उपयोग करके आउटपुट प्रतिरोध निर्धारित किया जाता है। किरचॉफ के वोल्टेज कानून का उपयोग जमीन से बाईं ओर आर के जमीन कनेक्शन के लिए<sub>2</sub>:
आकृति का उपयोग करते हुए, किरचॉफ के नियमों का उपयोग करके आउटपुट प्रतिरोध निर्धारित किया जाता है। किरचॉफ के वोल्टेज कानून का उपयोग जमीन से बाईं ओर आर के जमीन कनेक्शन के लिए<sub>2</sub>:
Line 91: Line 91:
{{anchor|Eq4}समीकरण। 4
{{anchor|Eq4}समीकरण। 4
:<math>R_O = \frac{V_x}{I_x} = r_O \left[ 1 + \frac{\beta R_2}{( R_1 \parallel r_E ) + r_\pi + R_2} \right] </math>  <math>+ \ R_2 \left[ \frac{( R_1 \parallel r_E ) + r_\pi}{( R_1 \parallel r_E ) + r_\pi + R_2} \right] \ . </math>
:<math>R_O = \frac{V_x}{I_x} = r_O \left[ 1 + \frac{\beta R_2}{( R_1 \parallel r_E ) + r_\pi + R_2} \right] </math>  <math>+ \ R_2 \left[ \frac{( R_1 \parallel r_E ) + r_\pi}{( R_1 \parallel r_E ) + r_\pi + R_2} \right] \ . </math>
#Eq4|Eq के अनुसार। 4, Widlar करंट सोर्स का आउटपुट रेजिस्टेंस आउटपुट ट्रांजिस्टर के ही ऊपर बढ़ जाता है (जो कि r है<sub>O</sub>) जब तक आर<sub>2</sub> r की तुलना में काफी बड़ा है<sub>π</sub> आउटपुट ट्रांजिस्टर (बड़े प्रतिरोध आर<sub>2</sub> कारक गुणा आर बनाओ<sub>O</sub> मूल्य (β + 1) तक पहुंचें)। आउटपुट ट्रांजिस्टर में कम करंट होता है, जिससे r बनता है<sub>π</sub> बड़ा, और आर में वृद्धि<sub>2</sub> इस धारा को और कम करता है, जिससे r में सहसंबद्ध वृद्धि होती है<sub>π</sub>. इसलिए, आर का एक लक्ष्य<sub>2</sub> ≫ आर<sub>π</sub> अवास्तविक हो सकता है, और आगे की चर्चा प्रदान की जाती है # आउटपुट प्रतिरोध की वर्तमान निर्भरता। प्रतिरोध आर<sub>1</sub>∥r<sub>E</sub> आमतौर पर छोटा होता है क्योंकि उत्सर्जक प्रतिरोध आर<sub>E</sub> आमतौर पर केवल कुछ ओम होते हैं।
#इक्यू4|इक्यू के अनुसार। 4, विडलर वर्तमान स्रोत का आउटपुट रेजिस्टेंस आउटपुट ट्रांजिस्टर के ही ऊपर बढ़ जाता है (जो कि r है<sub>O</sub>) जब तक आर<sub>2</sub> r की तुलना में काफी बड़ा है<sub>π</sub> आउटपुट ट्रांजिस्टर (बड़े प्रतिरोध आर<sub>2</sub> कारक गुणा आर बनाओ<sub>O</sub> मूल्य (β + 1) तक पहुंचें)। आउटपुट ट्रांजिस्टर में कम वर्तमान होता है, जिससे r बनता है<sub>π</sub> बड़ा, और आर में वृद्धि<sub>2</sub> इस धारा को और कम करता है, जिससे r में सहसंबद्ध वृद्धि होती है<sub>π</sub>. इसलिए, आर का एक लक्ष्य<sub>2</sub> ≫ आर<sub>π</sub> अवास्तविक हो सकता है, और आगे की चर्चा प्रदान की जाती है # आउटपुट प्रतिरोध की वर्तमान निर्भरता। प्रतिरोध आर<sub>1</sub>∥r<sub>E</sub> सामान्यतौर पर छोटा होता है क्योंकि उत्सर्जक प्रतिरोध आर<sub>E</sub> सामान्यतौर पर केवल कुछ ओम होते हैं।


=== आउटपुट प्रतिरोध की वर्तमान निर्भरता ===
=== आउटपुट प्रतिरोध की वर्तमान निर्भरता ===


[[File:Widlar Resistance Plot.PNG|thumb|350px|चित्र 3: आउटपुट प्रतिरोध और आउटपुट करंट के बीच डिजाइन ट्रेड-ऑफ।
[[File:Widlar Resistance Plot.PNG|thumb|350px|चित्र 3: आउटपुट प्रतिरोध और आउटपुट वर्तमान के बीच डिजाइन ट्रेड-ऑफ।
{{paragraph break}}शीर्ष पैनल: सर्किट आउटपुट प्रतिरोध आर<sub>O</sub> बनाम डीसी आउटपुट करंट I<sub>C2</sub> #Eq5|Eq के डिज़ाइन सूत्र का उपयोग करके। आर के लिए 5<sub>2</sub> ;
{{paragraph break}}शीर्ष पैनल: परिपथ आउटपुट प्रतिरोध आर<sub>O</sub> बनाम डीसी आउटपुट वर्तमान I<sub>C2</sub> #इक्यू5|इक्यू  के डिज़ाइन सूत्र का उपयोग करके। आर के लिए 5<sub>2</sub> ;
{{paragraph break}}केंद्र पैनल: प्रतिरोध आर<sub>O2</sub> आउटपुट ट्रांजिस्टर एमिटर लेग में;
{{paragraph break}}केंद्र पैनल: प्रतिरोध आर<sub>O2</sub> आउटपुट ट्रांजिस्टर एमिटर लेग में;
{{paragraph break}निचला पैनल: आउटपुट प्रतिरोध में योगदान देने वाला फीडबैक कारक। संदर्भ ट्रांजिस्टर क्यू में वर्तमान<sub>1</sub> स्थिर रखा जाता है, जिससे अनुपालन वोल्टेज तय होता है। भूखंड I मानते हैं<sub>C1</sub> = 10 एमए, वी<sub>A</sub> = 50 वी, वी<sub>CC</sub> = 5 बी, आई<sub>S</sub> = 10 एफए, β<sub>1, 2</sub> = 100 धारा से स्वतंत्र।]]प्रतिरोधों की वर्तमान निर्भरता आर<sub>π</sub> और आर<sub>O</sub> लेख हाइब्रिड-पीआई मॉडल में चर्चा की गई है। प्रतिरोधक मानों की वर्तमान निर्भरता है:
<nowiki>{{paragraph break}निचला पैनल: आउटपुट प्रतिरोध में योगदान देने वाला प्रतिपुष्टि कारक होता है। संदर्भ ट्रांजिस्टर क्यू में वर्तमान</nowiki><sub>1</sub> स्थिर रखा जाता है, जिससे अनुपालन वोल्टेज तय होता है। भूखंड I मानते हैं<sub>C1</sub> = 10 एमए, वी<sub>A</sub> = 50 वी, वी<sub>CC</sub> = 5 बी, आई<sub>S</sub> = 10 एफए, β<sub>1, 2</sub> = 100 धारा से स्वतंत्र।]]प्रतिरोधों की वर्तमान निर्भरता आर<sub>π</sub> और आर<sub>O</sub> लेख हाइब्रिड-पीआई प्रतिरूप में चर्चा की गई है। प्रतिरोधक मानों की वर्तमान निर्भरता है:
:<math>r_\pi = \frac{v_{be}}{i_b}\Bigg|_{v_{ce} = 0} = \frac{V_\text{T}}{I_\text{B2}} = \beta_2\frac{V_\text{T}}{I_\text{C2}}\ ,</math>
:<math>r_\pi = \frac{v_{be}}{i_b}\Bigg|_{v_{ce} = 0} = \frac{V_\text{T}}{I_\text{B2}} = \beta_2\frac{V_\text{T}}{I_\text{C2}}\ ,</math>
और
और
Line 107: Line 107:
{{anchor|Eq5}समीकरण। 5
{{anchor|Eq5}समीकरण। 5
:<math>R_2 = \frac{V_\text{T}}{\left(1 + \frac{1}{\beta_2} \right) I_{C2}} \ln \left(\frac {I_{C1}}{I_{C2}}\right)\ . </math>
:<math>R_2 = \frac{V_\text{T}}{\left(1 + \frac{1}{\beta_2} \right) I_{C2}} \ln \left(\frac {I_{C1}}{I_{C2}}\right)\ . </math>
नतीजतन, छोटे आर के सामान्य मामले के लिए<sub>E</sub>, और R में दूसरे कार्यकाल की उपेक्षा करना<sub>O</sub> इस अपेक्षा के साथ कि अग्रणी शब्द जिसमें r शामिल है<sub>O</sub> बहुत बड़ा है:
नतीजतन, छोटे आर के सामान्य मामले के लिए<sub>E</sub>, और R में दूसरे कार्यकाल की उपेक्षा करना<sub>O</sub> इस अपेक्षा के साथ कि अग्रणी शब्द जिसमें r सम्मिलित है<sub>O</sub> बहुत बड़ा है:
{{Anchor|Eq6}समीकरण। 6
 
<nowiki>{{Anchor|Eq6}समीकरण। 6</nowiki>
:<math>\begin{align}
:<math>\begin{align}
   R_O &\approx r_O \left( 1 + \frac{\beta_2 R_2}{r_\pi + R_2} \right) \\
   R_O &\approx r_O \left( 1 + \frac{\beta_2 R_2}{r_\pi + R_2} \right) \\
       &= r_O \left( 1 + \frac{\beta_2 \ln \left(\frac{I_{C1}}{I_{C2}}\right)}{\beta_2 + 1 + \ln \left(\frac {I_{C1}}{I_{C2}}\right)} \right)
       &= r_O \left( 1 + \frac{\beta_2 \ln \left(\frac{I_{C1}}{I_{C2}}\right)}{\beta_2 + 1 + \ln \left(\frac {I_{C1}}{I_{C2}}\right)} \right)
\end{align}</math>
\end{align}</math>
जहाँ #Eq5|Eq को प्रतिस्थापित करके अंतिम रूप प्राप्त होता है। आर के लिए 5<sub>2</sub>. #Eq6|Eq. 6 से पता चलता है कि आउटपुट प्रतिरोध का मान r से बहुत बड़ा है<sub>O</sub> केवल I के साथ डिज़ाइन के लिए आउटपुट ट्रांजिस्टर परिणाम<sub>C1</sub> >> मैं<sub>C2</sub>. चित्रा 3 दिखाता है कि सर्किट आउटपुट प्रतिरोध आर<sub>O</sub> फीडबैक द्वारा इतना अधिक निर्धारित नहीं किया जाता है जितना कि प्रतिरोध r की वर्तमान निर्भरता द्वारा<sub>O</sub> आउटपुट ट्रांजिस्टर का (चित्र 3 में आउटपुट प्रतिरोध परिमाण के चार क्रमों में भिन्न होता है, जबकि प्रतिक्रिया कारक केवल परिमाण के एक क्रम से भिन्न होता है)।
जहाँ #इक्यू5|इक्यू को प्रतिस्थापित करके अंतिम रूप प्राप्त होता है। आर के लिए 5<sub>2</sub>. #इक्यू6|इक्यू6 से पता चलता है कि आउटपुट प्रतिरोध का मान r से बहुत बड़ा है<sub>O</sub> केवल I के साथ डिज़ाइन के लिए आउटपुट ट्रांजिस्टर परिणाम<sub>C1</sub> >> मैं<sub>C2</sub>. चित्रा 3 दिखाता है कि परिपथ आउटपुट प्रतिरोध आर<sub>O</sub> प्रतिपुष्टि द्वारा इतना अधिक निर्धारित नहीं किया जाता है जितना कि प्रतिरोध r की वर्तमान निर्भरता द्वारा<sub>O</sub> आउटपुट ट्रांजिस्टर का (चित्र 3 में आउटपुट प्रतिरोध परिमाण के चार क्रमों में भिन्न होता है, चूँकि प्रतिक्रिया कारक केवल परिमाण के क्रम से भिन्न होता है)।


आई की वृद्धि<sub>C1</sub> प्रतिक्रिया कारक को बढ़ाने के लिए भी अनुपालन वोल्टेज में वृद्धि हुई है, अच्छी बात नहीं है क्योंकि इसका मतलब है कि वर्तमान स्रोत अधिक प्रतिबंधित वोल्टेज रेंज पर काम करता है। इसलिए, उदाहरण के लिए, अनुपालन वोल्टेज सेट के लक्ष्य के साथ, I पर ऊपरी सीमा रखकर<sub>C1</sub>, और आउटपुट प्रतिरोध को पूरा करने के लक्ष्य के साथ, आउटपुट करंट I का अधिकतम मान<sub>C2</sub> सीमित है।
आई की वृद्धि<sub>C1</sub> प्रतिक्रिया कारक को बढ़ाने के लिए भी अनुपालन वोल्टेज में वृद्धि हुई है, अच्छी बात नहीं है क्योंकि इसका मतलब है कि वर्तमान स्रोत अत्यधिक प्रतिबंधित वोल्टेज रेंज पर काम करता है। इसलिए, उदाहरण के लिए, अनुपालन वोल्टेज सेट के लक्ष्य के साथ, I पर ऊपरी सीमा रखकर<sub>C1</sub>, और आउटपुट प्रतिरोध को पूरा करने के लक्ष्य के साथ, आउटपुट वर्तमान का अधिकतम मान<sub>C2</sub> सीमित है।


चित्र 3 में केंद्र पैनल एमिटर लेग रेजिस्टेंस और आउटपुट करंट के बीच डिज़ाइन ट्रेड-ऑफ दिखाता है: कम आउटपुट करंट के लिए बड़े लेग रेसिस्टर की आवश्यकता होती है, और इसलिए डिज़ाइन के लिए एक बड़ा क्षेत्र। क्षेत्र पर एक ऊपरी सीमा इसलिए आउटपुट करंट पर एक निचली सीमा और सर्किट आउटपुट प्रतिरोध पर एक ऊपरी सीमा निर्धारित करती है।
चित्र 3 में केंद्र पैनल एमिटर लेग रेजिस्टेंस और आउटपुट वर्तमान के बीच डिज़ाइन ट्रेड-ऑफ दिखाता है: कम आउटपुट वर्तमान के लिए बड़े लेग रेसिस्टर की आवश्यकता होती है, और इसलिए डिज़ाइन के लिए एक बड़ा क्षेत्र था| क्षेत्र पर एक ऊपरी सीमा इसलिए आउटपुट वर्तमान पर एक निचली सीमा और परिपथ आउटपुट प्रतिरोध पर एक ऊपरी सीमा निर्धारित करती है।


#Eq6|Eq. आर के लिए 6<sub>O</sub> R के मान के चयन पर निर्भर करता है<sub>2</sub> #Eq5|Eq के अनुसार। 5. इसका मतलब #Eq6|Eq. 6 एक सर्किट व्यवहार सूत्र नहीं है, बल्कि एक डिज़ाइन मान समीकरण है। एक बार आर<sub>2</sub> #Eq5|Eq का उपयोग करके किसी विशेष डिज़ाइन उद्देश्य के लिए चयन किया जाता है। 5, उसके बाद इसका मूल्य तय हो गया है। यदि सर्किट ऑपरेशन के कारण करंट, वोल्टेज या तापमान डिज़ाइन किए गए मानों से विचलित हो जाते हैं; फिर आर में परिवर्तन की भविष्यवाणी करने के लिए<sub>O</sub> ऐसे विचलन के कारण, #Eq4|Eq. 4 का उपयोग किया जाना चाहिए, #Eq6|Eq का नहीं। 6.
#इक्यू6|इक्यू. आर के लिए 6<sub>O</sub> R के मान के चयन पर निर्भर करता है<sub>2</sub> #इक्यू5|इक्यू के अनुसार। 5. इसका मतलब #इक्यू6|इक्यू. 6 एक परिपथ व्यवहार सूत्र नहीं है, बल्कि एक डिज़ाइन मान समीकरण है। एक बार आर<sub>2</sub> #इक्यू5|इक्यू का उपयोग करके किसी विशेष डिज़ाइन उद्देश्य के लिए चयन किया जाता है। 5, उसके बाद इसका मूल्य तय हो गया है। यदि परिपथ ऑपरेशन के कारण वर्तमान, वोल्टेज या तापमान डिज़ाइन किए गए मानों से विचलित हो जाते हैं; फिर आर में परिवर्तन की भविष्यवाणी करने के लिए<sub>O</sub> ऐसे विचलन के कारण, #इक्यू4|इक्यू. 4 का उपयोग किया जाना चाहिए, #इक्यू6|इक्यू का नहीं। 6.


== यह भी देखें ==
== यह भी देखें ==

Revision as of 20:25, 29 June 2023

विडलर से आरेख %2526u%3D%25252Fnetahtml%25252FPTO%25252Fsearch-bool.html%2526r%3D16%2526f%3DG%2526l%3D50%2526co1%3DAND%2526d%3DPALL%2526s1%3DWidlar.INNM.%2526OS%3DIN %2Fविडलर%2526RS% 3DIN%2FWidlar&PageNum=&Rtype=&SectionNum=&idkey=NONE&Input=देखें+प्रथम+पृष्ठ मूल पेटेंट

एक विडलर वर्तमान स्रोत मूल दो-अवरोध वर्तमान दर्पण का संशोधन है जो केवल आउटपुट ट्रांजिस्टर के लिए उत्सर्जक अध: पतन रोकनेवाला को सम्मिलित करता है, जो वर्तमान स्रोत को केवल मध्यम प्रतिरोधक मानों का उपयोग करके कम धाराओं को उत्पन्न करने में सक्षम बनाता है।[1][2][3]

विडलर परिपथ का उपयोग द्विध्रु[4]वी ट्रांजिस्टर, एमओएसएफईटी और यहां तक ​​कि शून्यक-नाली के साथ भी किया जा सकता है। उदाहरण अनुप्रयोग 741-प्रकार के ऑप एम्प का परिचालन प्रवर्धक#आंतरिक परिपथ है,[5] और विडलर ने परिपथ को कई बनावट में हिस्से के रूप में इस्तेमाल किया जाता है।

इस परिपथ का नाम इसके आविष्कारक बॉब विडलर के नाम पर रखा गया है और 1967 में इसका पेटेंट कराया गया था।[6][7]


डीसी विश्लेषण

चित्र 1: बाइपोलर ट्रांजिस्टर का उपयोग करते हुए विडलर करंट स्रोत का एक संस्करण।

चित्रा 1 द्विध्रुवी ट्रांजिस्टर का उपयोग करते हुए विडलर वर्तमान स्रोत का उदाहरण है, जहां उत्सर्जक रोकनेवाला आर2 आउटपुट ट्रांजिस्टर क्यू से जुड़ा है2, और क्यू में वर्तमान को कम करने का प्रभाव है2 क्यू के सापेक्ष1. इस परिपथ की कुंजी यह है कि प्रतिरोधक आर के पार वोल्टेज गिरता है2 ट्रांजिस्टर क्यू के आधारित उत्सर्जन वोल्टेज से घटाता है2, जिससे इस ट्रांजिस्टर को ट्रांजिस्टर क्यू की तुलना में समाप्त कर दिया जाता है1. यह अवलोकन चित्र 1 में परिपथ के दोनों ओर पाए जाने वाले आधार वोल्टेज अभिव्यक्ति की बराबरी करके व्यक्त किया गया है:

जहां बी2 उत्पादन ट्रांजिस्टर का बीटा-मान है, जो इनपुट ट्रांजिस्टर के समान नहीं है, आंशिक रूप से क्योंकि दो ट्रांजिस्टर में धाराएं बहुत भिन्न हैं।[8] चर IB2 उत्पादन ट्रांजिस्टर, V का आधार वर्तमान हैBE आधारित उत्सर्जन वोल्टेज को संदर्भित करता है। इस समीकरण का अर्थ है (शॉकली द्विधुवी समीकरण का उपयोग करके):

सम। 1

जहां वीT बोल्ट्जमान स्थिरांक है # सेमीकंडक्टर भौतिकी में भूमिका: थर्मल वोल्टेज है।

यह समीकरण सन्निकटन करता है कि धाराएँ स्केल धाराओं, I की तुलना में बहुत बड़ी हैंS1 और मैंS2; द्विध्रुवी रेलमार्गसंयोग ट्रांजिस्टर # ऑपरेशन के क्षेत्रों के निकट वर्तमान स्तरों को छोड़कर सन्निकटन मान्य है। निम्नलिखित में, स्केल धाराओं को समान माना जाता है; व्यवहार में, इसे विशेष रूप से व्यवस्थित करने की आवश्यकता है।

निर्दिष्ट धाराओं के साथ डिजाइन प्रक्रिया

दर्पण को बनाने करने के लिए, उत्पादन वर्तमान को दो प्रतिरोधक मान आर से संबंधित होना चाहिए1 और आर2. एक बुनियादी अवलोकन यह है कि आउटपुट ट्रांजिस्टर बाइपोलर रेलमार्गसंयोग ट्रांजिस्टर # संचालन के क्षेत्रों में केवल तभी तक होता है जब तक इसका संग्रहकर्ता आधारित वोल्टेज गैर-शून्य होता है। इस प्रकार, दर्पण के बनाने के लिए सबसे सरल पूर्वाग्रह स्थिति लागू वोल्टेज वी संग्रह करती हैA बेस वोल्टेज वी के बराबर करने के लिएB. वी का यह न्यूनतम उपयोगी मूल्यA वर्तमान दर्पण # वर्तमान स्रोत का अनुपालन वोल्टेज कहा जाता है। उस पूर्वाग्रह की स्थिति के साथ, प्रारंभिक प्रभाव बनावट में कोई भूमिका नहीं निभाता है।[9]

ये विचार निम्नलिखित डिजाइन प्रक्रिया का सुझाव देते हैं:

  • वांछित उत्पादन परिपथ का चयन करें, IO = मैंC2.
  • संदर्भ वर्तमान का चयन करें, IR1, उत्पादन परिपथ से बड़ा माना जाता है, शायद काफी बड़ा (यही परिपथ का उद्देश्य है)।
  • क्यू के उत्पादक सामग्री संग्रहकर्ता वर्तमान का निर्धारण करें1, मैंC1:
  • आधार वोल्टेज वी निर्धारित करेंBE1 द्विधुर्वी प्रतिमान#शॉकली द्विधुवी प्रतिमान का उपयोग करना था |
जहां मैंS उपकरण पैरामीटर है जिसे कभी-कभी स्केल वाहक कहा जाता है।
आधारित वोल्टेज का मान भी अनुपालन वोल्टेज वी संग्रह करता हैA = वीBE1. यह वोल्टेज सबसे कम वोल्टेज है जिसके लिए दर्पण ठीक से काम करता है।
  • आर निर्धारित करें1:
  • {{anchor|R2}उत्सर्जक लेग प्रतिरोध आर ज्ञात कीजिए2 #इक्यू1|इक्यू का उपयोग करना था। 1 (अव्यवस्था को कम करने के लिए, पैमाने की धाराओं को बराबर चुना जाता है):


दिए गए प्रतिरोधक मानों के साथ करंट का पता लगाना

बनावट की समस्या का व्युत्क्रम वर्तमान का पता लगाना है जब प्रतिरोधक मान ज्ञात होते हैं। आगे पुनरावृत्त विधि का वर्णन किया गया है। मान लें कि वर्तमान स्रोत पक्षपाती है इसलिए उत्पादन ट्रांजिस्टर क्यू का संग्रहकर्ता-आधारित वोल्टेज2 शून्य है। आर के माध्यम से वर्तमान1 इनपुट या संदर्भ वर्तमान के रूप में दिया गया है,

पुनर्व्यवस्थित, आईC1 के रूप में पाया जाता है:

सम। 2

द्विधुवी समीकरण प्रदान करता है:

{{anchor|Eq3}समीकरण। 3

  1. Eq1|Eq.1 प्रदान करता है:

ये तीन संबंध धाराओं के लिए एक गैर-रैखिक, निहित निर्धारण हैं जिन्हें पुनरावृति द्वारा हल किया जा सकता है।

  • हम I के लिए प्रराम्भित मानों का अनुमान लगाते हैंC1 और मैंC2.
  • हम वी के लिए एक मान पाते हैंBE1:
  • हम I के लिए एक नया मान पाते हैंC1:
  • हम I के लिए एक नया मान पाते हैंC2:

यह प्रक्रिया अभिसरण के लिए दोहराई जाती है, और एक स्प्रेडशीट में आसानी से स्थापित की जाती है। लघु क्रम में समाधान प्राप्त करने के लिए प्रारंभिक मानों को धारण करने वाली स्प्रेडशीट कोशिकाओं में नए मानों को कॉपी करने के लिए बस मैक्रो का उपयोग करता है।

ध्यान दें कि दिखाए गए परिपथ के साथ, यदि वीCC परिवर्तन, उत्पादन वाहक बदल जाता था। इसलिए, वी में उतार-चढ़ाव के बावजूद उत्पादन वाहक को स्थिर रखने के लिएCC, प्रतिरोध आर का उपयोग करने के बजाय परिपथ को वर्तमान स्रोत द्वारा संचालित किया जाना चाहिए था1.

सटीक समाधान

उपर्युक्त अतीन्द्रिय समीकरणों को ठीक लैम्बर्ट डब्ल्यू फलन के संदर्भ में हल किया जा सकता है।

आउटपुट प्रतिबाधा

चित्रा 2: चित्रा 1 में दिखाए गए विडलर स्रोत के आउटपुट प्रतिरोध को खोजने के लिए लघु-संकेत सर्किट। एक परीक्षण वर्तमान Ix आउटपुट पर लगाया जाता है, और आउटपुट प्रतिरोध तब R होता हैO = वीx / मैंx.

वर्तमान स्रोत की महत्वपूर्ण संपत्ति इसका छोटा संकेत वृद्धिशील आउटपुट प्रतिबाधा है, जो आदर्श रूप से अनंत होना चाहिए। विडलर परिपथ              ट्रांके लिस्थानीजिस्टर ए य वर्तमान प्रतिपुस्टि पेश करता है . क्यू में वर्तमान में कोई वृद्धि2 आर भर में वोल्टेज ड्रॉप बढ़ाता है2, वी को कम करनाBE क्यू के लिए2, जिससे वर्तमान में वृद्धि का मुकाबला

परिपथ के लिए एक छोटे-संकेत प्रतिमान का उपयोग करके आउटपुट प्रतिरोध पाया जार क्यू1 इसके छोटे-संकेत उत्सर्जक प्रतिरोध आर द्वारा प्रतिस्थापित किया जाता हैE क्योंकि यह द्विधुवी जुड़ा हुआ है।[10] ट्रांजिस्टर Qकिया जा सकता है। इस प्रतिक्रिया का मतलब है कि परिपथ का आउटपुट प्रतिबाधा बढ़ गया है, क्योंकि प्रतिक्रिया में आर सम्मिलित है2 किसी दिए गए वर्तमान को चलाने के लिए एक बड़े वोल्टेज का उपयोग करने के लिए मजबूर करता है।ता है, चित्र 2 में दिखाया गया है। ट्रांजिस्ट2 इसके हाइब्रिड-पाई प्रतिमान के साथ बदल दिया गया है। एक परीक्षण वर्तमान है Ix आउटपुट पर संलग्न है।

आकृति का उपयोग करते हुए, किरचॉफ के नियमों का उपयोग करके आउटपुट प्रतिरोध निर्धारित किया जाता है। किरचॉफ के वोल्टेज कानून का उपयोग जमीन से बाईं ओर आर के जमीन कनेक्शन के लिए2:

पुनर्व्यवस्थित:

आर के मूल सम्पर्क से किरचॉफ के वोल्टेज कानून का उपयोग करना2 परीक्षण वर्तमान के आधार पर:

या, I के लिए प्रतिस्थापनb:

{{anchor|Eq4}समीकरण। 4

  
  1. इक्यू4|इक्यू के अनुसार। 4, विडलर वर्तमान स्रोत का आउटपुट रेजिस्टेंस आउटपुट ट्रांजिस्टर के ही ऊपर बढ़ जाता है (जो कि r हैO) जब तक आर2 r की तुलना में काफी बड़ा हैπ आउटपुट ट्रांजिस्टर (बड़े प्रतिरोध आर2 कारक गुणा आर बनाओO मूल्य (β + 1) तक पहुंचें)। आउटपुट ट्रांजिस्टर में कम वर्तमान होता है, जिससे r बनता हैπ बड़ा, और आर में वृद्धि2 इस धारा को और कम करता है, जिससे r में सहसंबद्ध वृद्धि होती हैπ. इसलिए, आर का एक लक्ष्य2 ≫ आरπ अवास्तविक हो सकता है, और आगे की चर्चा प्रदान की जाती है # आउटपुट प्रतिरोध की वर्तमान निर्भरता। प्रतिरोध आर1∥rE सामान्यतौर पर छोटा होता है क्योंकि उत्सर्जक प्रतिरोध आरE सामान्यतौर पर केवल कुछ ओम होते हैं।

आउटपुट प्रतिरोध की वर्तमान निर्भरता

इक्यू के डिज़ाइन सूत्र का उपयोग करके। आर के लिए 52 ;
केंद्र पैनल: प्रतिरोध आरO2 आउटपुट ट्रांजिस्टर एमिटर लेग में; {{paragraph break}निचला पैनल: आउटपुट प्रतिरोध में योगदान देने वाला प्रतिपुष्टि कारक होता है। संदर्भ ट्रांजिस्टर क्यू में वर्तमान1 स्थिर रखा जाता है, जिससे अनुपालन वोल्टेज तय होता है। भूखंड I मानते हैंC1 = 10 एमए, वीA = 50 वी, वीCC = 5 बी, आईS = 10 एफए, β1, 2 = 100 धारा से स्वतंत्र।

प्रतिरोधों की वर्तमान निर्भरता आरπ और आरO लेख हाइब्रिड-पीआई प्रतिरूप में चर्चा की गई है। प्रतिरोधक मानों की वर्तमान निर्भरता है:

और

प्रारंभिक प्रभाव के कारण आउटपुट प्रतिरोध है जब VCB = 0 वी (डिवाइस पैरामीटर वीA प्रारंभिक वोल्टेज है)।

इस लेख में #R2 से (सुविधा के लिए स्केल धाराओं को बराबर सेट करना): {{anchor|Eq5}समीकरण। 5

नतीजतन, छोटे आर के सामान्य मामले के लिएE, और R में दूसरे कार्यकाल की उपेक्षा करनाO इस अपेक्षा के साथ कि अग्रणी शब्द जिसमें r सम्मिलित हैO बहुत बड़ा है:

{{Anchor|Eq6}समीकरण। 6

जहाँ #इक्यू5|इक्यू को प्रतिस्थापित करके अंतिम रूप प्राप्त होता है। आर के लिए 52. #इक्यू6|इक्यू6 से पता चलता है कि आउटपुट प्रतिरोध का मान r से बहुत बड़ा हैO केवल I के साथ डिज़ाइन के लिए आउटपुट ट्रांजिस्टर परिणामC1 >> मैंC2. चित्रा 3 दिखाता है कि परिपथ आउटपुट प्रतिरोध आरO प्रतिपुष्टि द्वारा इतना अधिक निर्धारित नहीं किया जाता है जितना कि प्रतिरोध r की वर्तमान निर्भरता द्वाराO आउटपुट ट्रांजिस्टर का (चित्र 3 में आउटपुट प्रतिरोध परिमाण के चार क्रमों में भिन्न होता है, चूँकि प्रतिक्रिया कारक केवल परिमाण के क्रम से भिन्न होता है)।

आई की वृद्धिC1 प्रतिक्रिया कारक को बढ़ाने के लिए भी अनुपालन वोल्टेज में वृद्धि हुई है, अच्छी बात नहीं है क्योंकि इसका मतलब है कि वर्तमान स्रोत अत्यधिक प्रतिबंधित वोल्टेज रेंज पर काम करता है। इसलिए, उदाहरण के लिए, अनुपालन वोल्टेज सेट के लक्ष्य के साथ, I पर ऊपरी सीमा रखकरC1, और आउटपुट प्रतिरोध को पूरा करने के लक्ष्य के साथ, आउटपुट वर्तमान का अधिकतम मानC2 सीमित है।

चित्र 3 में केंद्र पैनल एमिटर लेग रेजिस्टेंस और आउटपुट वर्तमान के बीच डिज़ाइन ट्रेड-ऑफ दिखाता है: कम आउटपुट वर्तमान के लिए बड़े लेग रेसिस्टर की आवश्यकता होती है, और इसलिए डिज़ाइन के लिए एक बड़ा क्षेत्र था| क्षेत्र पर एक ऊपरी सीमा इसलिए आउटपुट वर्तमान पर एक निचली सीमा और परिपथ आउटपुट प्रतिरोध पर एक ऊपरी सीमा निर्धारित करती है।

  1. इक्यू6|इक्यू. आर के लिए 6O R के मान के चयन पर निर्भर करता है2 #इक्यू5|इक्यू के अनुसार। 5. इसका मतलब #इक्यू6|इक्यू. 6 एक परिपथ व्यवहार सूत्र नहीं है, बल्कि एक डिज़ाइन मान समीकरण है। एक बार आर2 #इक्यू5|इक्यू का उपयोग करके किसी विशेष डिज़ाइन उद्देश्य के लिए चयन किया जाता है। 5, उसके बाद इसका मूल्य तय हो गया है। यदि परिपथ ऑपरेशन के कारण वर्तमान, वोल्टेज या तापमान डिज़ाइन किए गए मानों से विचलित हो जाते हैं; फिर आर में परिवर्तन की भविष्यवाणी करने के लिएO ऐसे विचलन के कारण, #इक्यू4|इक्यू. 4 का उपयोग किया जाना चाहिए, #इक्यू6|इक्यू का नहीं। 6.

यह भी देखें

संदर्भ

  1. PR Gray, PJ Hurst, SH Lewis & RG Meyer (2001). एनालॉग इंटीग्रेटेड सर्किट का विश्लेषण और डिजाइन (4th ed.). John Wiley and Sons. pp. §4.4.1.1 pp. 299–303. ISBN 0-471-32168-0.{{cite book}}: CS1 maint: multiple names: authors list (link)
  2. AS Sedra & KC Smith (2004). माइक्रोइलेक्ट्रॉनिक सर्किट (5th ed.). Oxford University Press. Example 6.14, pp. 654–655. ISBN 0-19-514251-9.
  3. MH Rashid (1999). Microelectronic circuits: analysis and design. PWS Publishing Co. pp. 661–665. ISBN 0-534-95174-0.
  4. See, for example, Figure 2 in IC voltage regulators.
  5. AS Sedra & KC Smith (2004). §9.4.2, p. 899 (5th ed.). ISBN 0-19-514251-9.
  6. RJ Widlar: US Patent Number 03320439; Filed May 26, 1965; Granted May 16, 1967: Low-value current source for integrated circuits
  7. See Widlar: Some circuit design techniques for linear integrated circuits and Design techniques for monolithic operational amplifiers
  8. PR Gray, PJ Hurst, SH Lewis & RG Meyer (2001). Figure 2.38, p. 115. ISBN 0-471-32168-0.{{cite book}}: CS1 maint: multiple names: authors list (link)
  9. Of course, one might imagine a design where the output resistance of the mirror is a major consideration. Then a different approach is necessary.
  10. In a diode-connected transistor the collector is short-circuited to the base, so the transistor collector-base junction has no time-varying voltage across it. As a result, the transistor behaves like the base-emitter diode, which at low frequencies has a small-signal circuit that is simply the resistor rE = VT / IE, with IE the DC Q-point emitter current. See diode small-signal circuit.


अग्रिम पठन