ऑफसेट बाइनरी: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
{{About|सामान्य तौर पर पक्षपातपूर्ण प्रतिनिधित्व|अतिरिक्त-3 प्रतिनिधित्व|स्थानांतरित बाइनरी (कोड)|द्विआधारी स्थानांतरण|Bit shifting}} | {{About|सामान्य तौर पर पक्षपातपूर्ण प्रतिनिधित्व|अतिरिक्त-3 प्रतिनिधित्व|स्थानांतरित बाइनरी (कोड)|द्विआधारी स्थानांतरण|Bit shifting}} | ||
ऑफसेट | '''ऑफसेट द्विआधारी''',<ref name="Patrice_2006"/> जिसे अतिरिक्त-K,<ref name="Patrice_2006"/>'''अतिरिक्त-''N'', अतिरिक्त-e''',<ref name="Dokter_1973"/><ref name="Dokter_1975"/>'''अतिरिक्त कोड या अभिनत प्रतिरूपण,''' के रूप में भी जाना जाता है, वह [[हस्ताक्षरित संख्या प्रतिनिधित्व|हस्ताक्षरित संख्या प्रतिरूपण]] के लिए एक विधि है जहां एक हस्ताक्षरित संख्या <var>n</var> को अहस्ताक्षरित संख्या <var>n</var>+<var>K के अनुरूप द्वयंक प्रतिरूप द्वारा दर्शाया जाता है, जहाँ <var>K</var> ''पूर्वाग्रह मान'' या ''ऑफ़सेट'' होता है। ऑफसेट द्विआधारी के लिए कोई मानक नहीं है, लेकिन प्रायः ''एन''-बिट द्विआधारी शब्द के लिए ''K,'' ''K''=2<sup>n−1</sup>होता है (उदाहरण के लिए, चार अंकों वाली द्विआधारी संख्या के लिए ऑफसेट 2<sup>3</sup>=8 होगा)। इसका परिणाम यह होता है कि न्यूनतम ऋणात्मक मान को सभी-शून्य द्वारा दर्शाया जाता है, तथा शून्य मान को सबसे महत्वपूर्ण बिट में 1 और अन्य सभी बिट्स में शून्य द्वारा दर्शाया जाता है, और [[पूर्णांक अतिप्रवाह|अधिकतम धनात्मक]] मान को सभी-बिट द्वारा दर्शाया जाता है (सुविधाजनक रूप से, यह यह [[दो के पूरक]] का उपयोग करने के समान है लेकिन सबसे महत्वपूर्ण बिट व्युत्क्रमित है)। इसका परिणाम यह भी होता है कि एक तार्किक तुलना ऑपरेशन में, किसी को वास्तविक रूप संख्यात्मक तुलना ऑपरेशन के समान ही परिणाम मिलता है, जबकि, दो के पूरक संकेतन में एक तार्किक तुलना वास्तविक रूप संख्यात्मक तुलना ऑपरेशन से सहमत होगी यदि और केवल यदि संख्याएँ तुलना में एक ही चिन्ह है। अन्यथा तुलना का भाव उल्टा हो जाएगा, सभी ऋणात्मक मूल्यों को सभी सकारात्मक मूल्यों से बड़ा मान लिया जाएगा। | ||
{{anchor|Excess-1}}प्रारंभिक सिंक्रोनस मल्टीप्लेक्सिंग टेलीग्राफ में उपयोग किए जाने वाले 5-बिट बॉडॉट कोड को ऑफसेट-1 (अतिरिक्त-1) प्रतिबिंबित | {{anchor|Excess-1}}प्रारंभिक सिंक्रोनस मल्टीप्लेक्सिंग टेलीग्राफ में उपयोग किए जाने वाले 5-बिट बॉडॉट कोड को ऑफसेट-1 (अतिरिक्त-1) प्रतिबिंबित द्विआधारी कोड # टेलीग्राफी कोड | प्रतिबिंबित द्विआधारी (ग्रे) कोड के रूप में देखा जा सकता है। | ||
{{anchor|Excess-64}}ऑफसेट-64 (अतिरिक्त-64) नोटेशन का एक ऐतिहासिक रूप से प्रमुख उदाहरण आईबीएम सिस्टम/360 और सिस्टम/370 पीढ़ी के कंप्यूटरों में [[ तैरनेवाला स्थल ]] (एक्सपोनेंशियल) नोटेशन में था। विशेषता (प्रतिपादक) ने सात-बिट अतिरिक्त-64 संख्या का रूप ले लिया (उसी बाइट के उच्च-क्रम बिट में [[महत्व]] का चिह्न शामिल था)।<ref name="IBM_360"/> | {{anchor|Excess-64}}ऑफसेट-64 (अतिरिक्त-64) नोटेशन का एक ऐतिहासिक रूप से प्रमुख उदाहरण आईबीएम सिस्टम/360 और सिस्टम/370 पीढ़ी के कंप्यूटरों में [[ तैरनेवाला स्थल ]] (एक्सपोनेंशियल) नोटेशन में था। विशेषता (प्रतिपादक) ने सात-बिट अतिरिक्त-64 संख्या का रूप ले लिया (उसी बाइट के उच्च-क्रम बिट में [[महत्व]] का चिह्न शामिल था)।<ref name="IBM_360"/> | ||
{{anchor|Excess-129}}[[माइक्रोसॉफ्ट बाइनरी फॉर्मेट]] में 8-बिट एक्सपोनेंट, 1970 और 1980 के दशक में विभिन्न प्रोग्रामिंग भाषाओं (विशेष रूप से [[ बुनियादी ]]) में उपयोग किया जाने वाला एक फ्लोटिंग पॉइंट फॉर्मेट, ऑफसेट-129 नोटेशन (अतिरिक्त-129) का उपयोग करके एन्कोड किया गया था। | {{anchor|Excess-129}}[[माइक्रोसॉफ्ट बाइनरी फॉर्मेट|माइक्रोसॉफ्ट द्विआधारी फॉर्मेट]] में 8-बिट एक्सपोनेंट, 1970 और 1980 के दशक में विभिन्न प्रोग्रामिंग भाषाओं (विशेष रूप से [[ बुनियादी ]]) में उपयोग किया जाने वाला एक फ्लोटिंग पॉइंट फॉर्मेट, ऑफसेट-129 नोटेशन (अतिरिक्त-129) का उपयोग करके एन्कोड किया गया था। | ||
{{anchor|Excess-15|Excess-127|Excess-1023|Excess-16383}}[[आईईईई 754-2008]]|फ़्लोटिंग-पॉइंट अंकगणित के लिए आईईईई मानक (आईईईई 754) अपने प्रत्येक IEEE_754#Basic_and_interchange_formats में घातांक भाग के लिए ऑफ़सेट नोटेशन का उपयोग करता है। हालाँकि, असामान्य रूप से, अतिरिक्त 2 का उपयोग करने के बजाय<sup>n−1</sup> यह अतिरिक्त 2 का उपयोग करता है<sup>n−1</sup> − 1 (अर्थात अतिरिक्त-15, अधिकता-127, अधिकता-1023, अधिकता-16383) जिसका अर्थ है कि घातांक के अग्रणी (उच्च-क्रम) बिट को उलटने से घातांक दो को सही करने में परिवर्तित नहीं होगा पूरक संकेतन. | {{anchor|Excess-15|Excess-127|Excess-1023|Excess-16383}}[[आईईईई 754-2008]]|फ़्लोटिंग-पॉइंट अंकगणित के लिए आईईईई मानक (आईईईई 754) अपने प्रत्येक IEEE_754#Basic_and_interchange_formats में घातांक भाग के लिए ऑफ़सेट नोटेशन का उपयोग करता है। हालाँकि, असामान्य रूप से, अतिरिक्त 2 का उपयोग करने के बजाय<sup>n−1</sup> यह अतिरिक्त 2 का उपयोग करता है<sup>n−1</sup> − 1 (अर्थात अतिरिक्त-15, अधिकता-127, अधिकता-1023, अधिकता-16383) जिसका अर्थ है कि घातांक के अग्रणी (उच्च-क्रम) बिट को उलटने से घातांक दो को सही करने में परिवर्तित नहीं होगा पूरक संकेतन. | ||
ऑफसेट | ऑफसेट द्विआधारी का उपयोग प्रायः [[ अंकीय संकेत प्रक्रिया ]] (डीएसपी) में किया जाता है। अधिकांश [[एनॉलॉग से डिजिटल परिवर्तित करने वाला उपकरण]] (ए/डी) और [[डिज़िटल से एनालॉग कन्वर्टर]] (डी/ए) चिप्स एकध्रुवीय हैं, जिसका अर्थ है कि वे [[द्विध्रुवी संकेत]]ों (सकारात्मक और ऋणात्मक दोनों मूल्यों वाले सिग्नल) को संभाल नहीं सकते हैं। इसका एक सरल समाधान ए/डी और डी/ए कनवर्टर की सीमा के आधे के बराबर डीसी ऑफसेट के साथ एनालॉग सिग्नल को पूर्वाग्रहित करना है। परिणामी डिजिटल डेटा फिर ऑफसेट द्विआधारी प्रारूप में समाप्त हो जाता है।<ref name="Chen_1988"/> | ||
अधिकांश मानक कंप्यूटर सीपीयू चिप्स ऑफसेट | अधिकांश मानक कंप्यूटर सीपीयू चिप्स ऑफसेट द्विआधारी प्रारूप को सीधे संभाल नहीं सकते हैं{{citation needed|reason=This claim is not cited not supported in the paragraph|date=January 2022}}. सीपीयू चिप्स आम तौर पर केवल हस्ताक्षरित और अहस्ताक्षरित पूर्णांक, और फ़्लोटिंग पॉइंट मान प्रारूपों को संभाल सकते हैं। इन सीपीयू चिप्स द्वारा ऑफसेट द्विआधारी मानों को कई तरीकों से नियंत्रित किया जा सकता है। डेटा को केवल अहस्ताक्षरित पूर्णांक के रूप में माना जा सकता है, जिससे प्रोग्रामर को सॉफ़्टवेयर में शून्य ऑफसेट से निपटने की आवश्यकता होती है। डेटा को केवल शून्य ऑफसेट घटाकर हस्ताक्षरित पूर्णांक प्रारूप (जिसे सीपीयू मूल रूप से संभाल सकता है) में परिवर्तित किया जा सकता है। एन-बिट शब्द के लिए सबसे आम ऑफसेट 2 होने के परिणामस्वरूप<sup>n−1</sup>, जिसका अर्थ है कि पहला बिट दो के पूरक के सापेक्ष उलटा है, एक अलग घटाव चरण की कोई आवश्यकता नहीं है, लेकिन कोई केवल पहले बिट को उलटा कर सकता है। यह कभी-कभी हार्डवेयर में उपयोगी सरलीकरण है, और सॉफ्टवेयर में भी सुविधाजनक हो सकता है। | ||
तुलना के लिए दो के पूरक के साथ, चार बिट्स के लिए ऑफसेट | तुलना के लिए दो के पूरक के साथ, चार बिट्स के लिए ऑफसेट द्विआधारी की तालिका:<ref name="Intersil_1997"/> | ||
{| class="wikitable" border="1" | {| class="wikitable" border="1" | ||
|- | |- | ||
Line 87: | Line 87: | ||
| 1000 | | 1000 | ||
|} | |} | ||
ऑफसेट | ऑफसेट द्विआधारी को सबसे महत्वपूर्ण बिट को उल्टा करके दो के पूरक में परिवर्तित किया जा सकता है। उदाहरण के लिए, 8-बिट मानों के साथ, ऑफसेट द्विआधारी मान को दो के पूरक में परिवर्तित करने के लिए 0x80 के साथ XORed किया जा सकता है। विशिष्ट हार्डवेयर में बिट को उसके मूल रूप में स्वीकार करना आसान हो सकता है, लेकिन इसके मूल्य को उल्टे महत्व में लागू करना आसान हो सकता है। | ||
=={{anchor|Nuding|Diamond}}संबंधित कोड== | =={{anchor|Nuding|Diamond}}संबंधित कोड== | ||
Line 363: | Line 363: | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[हस्ताक्षरित संख्या अभ्यावेदन]] | * [[हस्ताक्षरित संख्या अभ्यावेदन]] | ||
* [[बाइनरी संख्या]] | * [[बाइनरी संख्या|द्विआधारी संख्या]] | ||
*अतिरिक्त-3 | *अतिरिक्त-3 | ||
*[[अतिरिक्त-128]] | *[[अतिरिक्त-128]] | ||
Line 369: | Line 369: | ||
* [[अतिरिक्त-ग्रे कोड]] | * [[अतिरिक्त-ग्रे कोड]] | ||
* अपनों का पूरक | * अपनों का पूरक | ||
* [[ बाइनरी ऑफसेट वाहक ]] | * [[ बाइनरी ऑफसेट वाहक | द्विआधारी ऑफसेट वाहक]] | ||
== संदर्भ == | == संदर्भ == |
Revision as of 22:54, 17 July 2023
ऑफसेट द्विआधारी,[1] जिसे अतिरिक्त-K,[1]अतिरिक्त-N, अतिरिक्त-e,[2][3]अतिरिक्त कोड या अभिनत प्रतिरूपण, के रूप में भी जाना जाता है, वह हस्ताक्षरित संख्या प्रतिरूपण के लिए एक विधि है जहां एक हस्ताक्षरित संख्या n को अहस्ताक्षरित संख्या n+K के अनुरूप द्वयंक प्रतिरूप द्वारा दर्शाया जाता है, जहाँ K पूर्वाग्रह मान या ऑफ़सेट होता है। ऑफसेट द्विआधारी के लिए कोई मानक नहीं है, लेकिन प्रायः एन-बिट द्विआधारी शब्द के लिए K, K=2n−1होता है (उदाहरण के लिए, चार अंकों वाली द्विआधारी संख्या के लिए ऑफसेट 23=8 होगा)। इसका परिणाम यह होता है कि न्यूनतम ऋणात्मक मान को सभी-शून्य द्वारा दर्शाया जाता है, तथा शून्य मान को सबसे महत्वपूर्ण बिट में 1 और अन्य सभी बिट्स में शून्य द्वारा दर्शाया जाता है, और अधिकतम धनात्मक मान को सभी-बिट द्वारा दर्शाया जाता है (सुविधाजनक रूप से, यह यह दो के पूरक का उपयोग करने के समान है लेकिन सबसे महत्वपूर्ण बिट व्युत्क्रमित है)। इसका परिणाम यह भी होता है कि एक तार्किक तुलना ऑपरेशन में, किसी को वास्तविक रूप संख्यात्मक तुलना ऑपरेशन के समान ही परिणाम मिलता है, जबकि, दो के पूरक संकेतन में एक तार्किक तुलना वास्तविक रूप संख्यात्मक तुलना ऑपरेशन से सहमत होगी यदि और केवल यदि संख्याएँ तुलना में एक ही चिन्ह है। अन्यथा तुलना का भाव उल्टा हो जाएगा, सभी ऋणात्मक मूल्यों को सभी सकारात्मक मूल्यों से बड़ा मान लिया जाएगा।
प्रारंभिक सिंक्रोनस मल्टीप्लेक्सिंग टेलीग्राफ में उपयोग किए जाने वाले 5-बिट बॉडॉट कोड को ऑफसेट-1 (अतिरिक्त-1) प्रतिबिंबित द्विआधारी कोड # टेलीग्राफी कोड | प्रतिबिंबित द्विआधारी (ग्रे) कोड के रूप में देखा जा सकता है।
ऑफसेट-64 (अतिरिक्त-64) नोटेशन का एक ऐतिहासिक रूप से प्रमुख उदाहरण आईबीएम सिस्टम/360 और सिस्टम/370 पीढ़ी के कंप्यूटरों में तैरनेवाला स्थल (एक्सपोनेंशियल) नोटेशन में था। विशेषता (प्रतिपादक) ने सात-बिट अतिरिक्त-64 संख्या का रूप ले लिया (उसी बाइट के उच्च-क्रम बिट में महत्व का चिह्न शामिल था)।[4]
माइक्रोसॉफ्ट द्विआधारी फॉर्मेट में 8-बिट एक्सपोनेंट, 1970 और 1980 के दशक में विभिन्न प्रोग्रामिंग भाषाओं (विशेष रूप से बुनियादी ) में उपयोग किया जाने वाला एक फ्लोटिंग पॉइंट फॉर्मेट, ऑफसेट-129 नोटेशन (अतिरिक्त-129) का उपयोग करके एन्कोड किया गया था।
आईईईई 754-2008|फ़्लोटिंग-पॉइंट अंकगणित के लिए आईईईई मानक (आईईईई 754) अपने प्रत्येक IEEE_754#Basic_and_interchange_formats में घातांक भाग के लिए ऑफ़सेट नोटेशन का उपयोग करता है। हालाँकि, असामान्य रूप से, अतिरिक्त 2 का उपयोग करने के बजायn−1 यह अतिरिक्त 2 का उपयोग करता हैn−1 − 1 (अर्थात अतिरिक्त-15, अधिकता-127, अधिकता-1023, अधिकता-16383) जिसका अर्थ है कि घातांक के अग्रणी (उच्च-क्रम) बिट को उलटने से घातांक दो को सही करने में परिवर्तित नहीं होगा पूरक संकेतन.
ऑफसेट द्विआधारी का उपयोग प्रायः अंकीय संकेत प्रक्रिया (डीएसपी) में किया जाता है। अधिकांश एनॉलॉग से डिजिटल परिवर्तित करने वाला उपकरण (ए/डी) और डिज़िटल से एनालॉग कन्वर्टर (डी/ए) चिप्स एकध्रुवीय हैं, जिसका अर्थ है कि वे द्विध्रुवी संकेतों (सकारात्मक और ऋणात्मक दोनों मूल्यों वाले सिग्नल) को संभाल नहीं सकते हैं। इसका एक सरल समाधान ए/डी और डी/ए कनवर्टर की सीमा के आधे के बराबर डीसी ऑफसेट के साथ एनालॉग सिग्नल को पूर्वाग्रहित करना है। परिणामी डिजिटल डेटा फिर ऑफसेट द्विआधारी प्रारूप में समाप्त हो जाता है।[5]
अधिकांश मानक कंप्यूटर सीपीयू चिप्स ऑफसेट द्विआधारी प्रारूप को सीधे संभाल नहीं सकते हैं[citation needed]. सीपीयू चिप्स आम तौर पर केवल हस्ताक्षरित और अहस्ताक्षरित पूर्णांक, और फ़्लोटिंग पॉइंट मान प्रारूपों को संभाल सकते हैं। इन सीपीयू चिप्स द्वारा ऑफसेट द्विआधारी मानों को कई तरीकों से नियंत्रित किया जा सकता है। डेटा को केवल अहस्ताक्षरित पूर्णांक के रूप में माना जा सकता है, जिससे प्रोग्रामर को सॉफ़्टवेयर में शून्य ऑफसेट से निपटने की आवश्यकता होती है। डेटा को केवल शून्य ऑफसेट घटाकर हस्ताक्षरित पूर्णांक प्रारूप (जिसे सीपीयू मूल रूप से संभाल सकता है) में परिवर्तित किया जा सकता है। एन-बिट शब्द के लिए सबसे आम ऑफसेट 2 होने के परिणामस्वरूपn−1, जिसका अर्थ है कि पहला बिट दो के पूरक के सापेक्ष उलटा है, एक अलग घटाव चरण की कोई आवश्यकता नहीं है, लेकिन कोई केवल पहले बिट को उलटा कर सकता है। यह कभी-कभी हार्डवेयर में उपयोगी सरलीकरण है, और सॉफ्टवेयर में भी सुविधाजनक हो सकता है।
तुलना के लिए दो के पूरक के साथ, चार बिट्स के लिए ऑफसेट द्विआधारी की तालिका:[6]
Decimal | Offset binary, K = 8 |
Two's complement |
---|---|---|
7 | 1111 | 0111 |
6 | 1110 | 0110 |
5 | 1101 | 0101 |
4 | 1100 | 0100 |
3 | 1011 | 0011 |
2 | 1010 | 0010 |
1 | 1001 | 0001 |
0 | 1000 | 0000 |
−1 | 0111 | 1111 |
−2 | 0110 | 1110 |
−3 | 0101 | 1101 |
−4 | 0100 | 1100 |
−5 | 0011 | 1011 |
−6 | 0010 | 1010 |
−7 | 0001 | 1001 |
−8 | 0000 | 1000 |
ऑफसेट द्विआधारी को सबसे महत्वपूर्ण बिट को उल्टा करके दो के पूरक में परिवर्तित किया जा सकता है। उदाहरण के लिए, 8-बिट मानों के साथ, ऑफसेट द्विआधारी मान को दो के पूरक में परिवर्तित करने के लिए 0x80 के साथ XORed किया जा सकता है। विशिष्ट हार्डवेयर में बिट को उसके मूल रूप में स्वीकार करना आसान हो सकता है, लेकिन इसके मूल्य को उल्टे महत्व में लागू करना आसान हो सकता है।
संबंधित कोड
This section is missing information about these tables.January 2022) ( |
Code | Type | Parameters | Weights | Distance | Checking | Complement | Groups of 5 | Simple addition | ||
---|---|---|---|---|---|---|---|---|---|---|
Offset, k | Width, n | Factor, q | ||||||||
8421 code | n[8] | 0 | 4 | 1 | 8 4 2 1 | 1–4 | No | No | No | No |
Nuding code[8][9] | 3n + 2[8] | 2 | 5 | 3 | — | 2–5 | Yes | 9 | Yes | Yes |
Stibitz code[10] | n + 3[8] | 3 | 4 | 1 | 8 4 −2 −1 | 1–4 | No | 9 | Yes | Yes |
Diamond code[8][11] | 27n + 6[8][12][13] | 6 | 8 | 27 | — | 3–8 | Yes | 9 | Yes | Yes |
25n + 15[12][13] | 15 | 8 | 25 | — | 3+ | Yes | Yes | ? | Yes | |
23n + 24[12][13] | 24 | 8 | 23 | — | 3+ | Yes | Yes | ? | Yes | |
19n + 42[12][13] | 42 | 8 | 19 | — | 3–8 | Yes | 9 | Yes | Yes |
|
|
|
|
|
|
यह भी देखें
- हस्ताक्षरित संख्या अभ्यावेदन
- द्विआधारी संख्या
- अतिरिक्त-3
- अतिरिक्त-128
- प्रतिपादक पूर्वाग्रह
- अतिरिक्त-ग्रे कोड
- अपनों का पूरक
- द्विआधारी ऑफसेट वाहक
संदर्भ
- ↑ 1.0 1.1 Chang, Angela; Chen, Yen; Delmas, Patrice (2006-03-07). "2.5.2: Data Representation: Offset binary representation (Excess-K)". COMPSCI 210S1T 2006 (PDF). Department of Computer Science, The University of Auckland, NZ. p. 18. Retrieved 2016-02-04.
- ↑ 2.0 2.1 2.2 Dokter, Folkert; Steinhauer, Jürgen (1973-06-18). Digital Electronics. Philips Technical Library (PTL) / Macmillan Education (Reprint of 1st English ed.). Eindhoven, Netherlands: The Macmillan Press Ltd. / N. V. Philips' Gloeilampenfabrieken. p. 44. doi:10.1007/978-1-349-01417-0. ISBN 978-1-349-01419-4. SBN 333-13360-9. Retrieved 2018-07-01. (270 pages) (NB. This is based on a translation of volume I of the two-volume German edition.)
- ↑ 3.0 3.1 3.2 Dokter, Folkert; Steinhauer, Jürgen (1975) [1969]. "2.4.4.4. Exzeß-e-Kodes". Digitale Elektronik in der Meßtechnik und Datenverarbeitung: Theoretische Grundlagen und Schaltungstechnik. Philips Fachbücher (in Deutsch). Vol. I (improved and extended 5th ed.). Hamburg, Germany: Deutsche Philips GmbH. pp. 51, 53–54. ISBN 3-87145-272-6. (xii+327+3 pages) (NB. The German edition of volume I was published in 1969, 1971, two editions in 1972, and 1975. Volume II was published in 1970, 1972, 1973, and 1975.)
- ↑ IBM System/360 Principles of Operation Form A22-6821. Various editions available on the WWW.[page needed]
- ↑ Electrical and Computer Science Department, Southeastern Massachusetts University, North Dartmouth, MA, USA (1988). Chen, Chi-hau (ed.). Signal Processing Handbook. New York, USA: Marcel Dekker, Inc./CRC Press. ISBN 0-8247-7956-8. Retrieved 2016-02-04.
- ↑ "Data Conversion Binary Code Formats" (PDF). Intersil Corporation (published 2000). May 1997. AN9657.1. Retrieved 2016-02-04.
- ↑ 7.0 7.1 Morgenstern, Bodo (January 1997) [July 1992]. "10.5.3.5 Excess-e-Code". Elektronik: Digitale Schaltungen und Systeme. Studium Technik (in Deutsch). Vol. 3 (revised 2nd ed.). Friedrich Vieweg & Sohn Verlagsgesellschaft mbH. pp. 120–121. doi:10.1007/978-3-322-85053-9. ISBN 978-3-528-13366-5. Retrieved 2020-05-26. (xviii+393 pages)
- ↑ 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 Diamond, Joseph M. (April 1955) [1954-11-12]. "Checking Codes for Digital Computers". Proceedings of the IRE. Correspondence. New York, USA. 43 (4): 483–490 [487–488]. doi:10.1109/JRPROC.1955.277858. eISSN 2162-6634. ISSN 0096-8390. Archived from the original on 2020-05-26. Retrieved 2020-05-26. (2 pages) (NB. The results discussed in this report are based on an earlier study carried out by Joseph M. Diamond and Morris Plotkin at Moore School of Engineering, University of Pennsylvania, in 1950–1951, on contract with the Burroughs Adding Machine Co.)
- ↑ 9.0 9.1 Nuding, Erich (1959-01-01). "Ein Sicherheitscode für Fernschreibgeräte, die zur Ein- und Ausgabe an elektronischen Rechenmaschine verwendet werden". Zeitschrift für Angewandte Mathematik und Mechanik. Kleine Mitteilungen (in Deutsch). 39 (5–6): 429. Bibcode:1959ZaMM...39..249N. doi:10.1002/zamm.19590390511. (1 page)
- ↑ 10.0 10.1 Stibitz, George Robert (1954-02-09) [1941-04-19]. "Complex Computer". Patent US2668661A. Retrieved 2020-05-24. [1] (102 pages)
- ↑ Plotkin, Morris (September 1960). "Binary Codes with Specified Minimum Distance". IRE Transactions on Information Theory. IT-6 (4): 445–450. doi:10.1109/TIT.1960.1057584. eISSN 2168-2712. ISSN 0096-1000. S2CID 40300278. (NB. Also published as Research Division Report 51-20 of University of Pennsylvania in January 1951.)
- ↑ 12.0 12.1 12.2 12.3 12.4 Brown, David T. (September 1960). "Error Detecting and Correcting Binary Codes for Arithmetic Operations". IRE Transactions on Electronic Computers. EC-9 (3): 333–337. doi:10.1109/TEC.1960.5219855. ISSN 0367-9950. S2CID 28263032.
- ↑ 13.0 13.1 13.2 13.3 13.4 Peterson, William Wesley; Weldon, Jr., Edward J. (1972) [February 1971, 1961]. "15.3 Arithmetic Codes / 15.6 Self-Complementing AN + B Codes". Written at Honolulu, Hawaii. Error-Correcting Codes (2 ed.). Cambridge, Massachusetts, USA: The Massachusetts Institute of Technology (The MIT Press). pp. 454–456, 460–461 [456, 461]. ISBN 0-262-16-039-0. LCCN 76-122262. (xii+560+4 pages)
अग्रिम पठन
- Gosling, John B. (1980). "6.8.5 Exponent Representation". In Sumner, Frank H. (ed.). Design of Arithmetic Units for Digital Computers. Macmillan Computer Science Series (1 ed.). Department of Computer Science, University of Manchester, Manchester, UK: The Macmillan Press Ltd. pp. 91, 137. ISBN 0-333-26397-9.
[…] [w]e use a[n exponent] value which is shifted by half the binary range of the number. […] This special form is sometimes referred to as a biased exponent, since it is the conventional value plus a constant. Some authors have called it a characteristic, but this term should not be used, since CDC and others use this term for the mantissa. It is also referred to as an 'excess -' representation, where, for example, - is 64 for a 7-bit exponent (27−1 = 64). […]
- Savard, John J. G. (2018) [2006]. "Decimal Representations". quadibloc. Archived from the original on 2018-07-16. Retrieved 2018-07-16. (NB. Mentions Excess-3, Excess-6, Excess-11, Excess-123.)
- Savard, John J. G. (2018) [2007]. "Chen-Ho Encoding and Densely Packed Decimal". quadibloc. Archived from the original on 2018-07-03. Retrieved 2018-07-16. (NB. Mentions Excess-25, Excess-250.)
- Savard, John J. G. (2018) [2005]. "Floating-Point Formats". quadibloc. Archived from the original on 2018-07-03. Retrieved 2018-07-16. (NB. Mentions Excess-32, Excess-64, Excess-128, Excess-256, Excess-976, Excess-1023, Excess-1024, Excess-2048, Excess-16384.)
- Savard, John J. G. (2018) [2005]. "Computer Arithmetic". quadibloc. Archived from the original on 2018-07-16. Retrieved 2018-07-16. (NB. Mentions Excess-64, Excess-500, Excess-512, Excess-1024.)