श्रृंखला नियम (संभावना): Difference between revisions

From Vigyanwiki
Line 1: Line 1:
{{Short description|Probability theory concept}}
{{Short description|Probability theory concept}}
{{distinguish|text=गणना में [[श्रृंखला नियम]]}}
{{distinguish|text=गणना में [[श्रृंखला नियम]]}}
प्रायिकता सिद्धांत में, श्रृंखला नियम<ref>{{cite book|first=René L.|last=Schilling|title=माप, अभिन्न, संभाव्यता और प्रक्रियाएं - संभवतः सैद्धांतिक न्यूनतम|location=Technische Universität Dresden, Germany |year=2021|ISBN=979-8-5991-0488-9|page=136ff.}}</ref> (जिसे सामान्य गुणनफल नियम भी कहा जाता है<ref>{{cite book|first=David A.|last=Schum|title=संभाव्य तर्क की साक्ष्यात्मक नींव|year=1994|publisher=Northwestern University Press|isbn=978-0-8101-1821-8|page=49}}</ref><ref>{{cite book|first=Henry E.|last=Klugh|title=Statistics: The Essentials for Research|year=2013|publisher=Psychology Press|isbn=978-1-134-92862-0|page=149|edition=3rd}}</ref>) यह वर्णन करता है कि सशर्त प्रायिकताओं का उपयोग करके, आवश्यक रूप से स्वतंत्र न होते हुए भी, घटनाओं या क्रमशः [[यादृच्छिक चर]] के [[संयुक्त वितरण]] के प्रतिच्छेदन की संभावना की गणना कैसे करें। नियम का उपयोग विशेष रूप से असतत [[प्रसंभाव्यता प्रक्रिया]] के संदर्भ में और अनुप्रयोगों में किया जाता है, उदाहरण के लिए [[बायेसियन नेटवर्क]] का अध्ययन, जो सशर्त प्रायिकताओं के संदर्भ में [[प्रायिकता वितरण]] का वर्णन करता है।
प्रायिकता सिद्धांत में, श्रृंखला नियम<ref>{{cite book|first=René L.|last=Schilling|title=माप, अभिन्न, संभाव्यता और प्रक्रियाएं - संभवतः सैद्धांतिक न्यूनतम|location=Technische Universität Dresden, Germany |year=2021|ISBN=979-8-5991-0488-9|page=136ff.}}</ref> (जिसे सामान्य गुणनफल नियम भी कहा जाता है<ref>{{cite book|first=David A.|last=Schum|title=संभाव्य तर्क की साक्ष्यात्मक नींव|year=1994|publisher=Northwestern University Press|isbn=978-0-8101-1821-8|page=49}}</ref><ref>{{cite book|first=Henry E.|last=Klugh|title=Statistics: The Essentials for Research|year=2013|publisher=Psychology Press|isbn=978-1-134-92862-0|page=149|edition=3rd}}</ref>) यह वर्णन करता है कि सशर्त प्रायिकताओं का उपयोग करके, आवश्यक रूप से स्वतंत्र न होते हुए भी, यह निश्चित करता है कि घटनाओं या क्रमशः [[यादृच्छिक चर]] के [[संयुक्त वितरण]] के प्रतिच्छेदन की संभावना की गणना कैसे करें। नियम का उपयोग विशेष रूप से असतत [[प्रसंभाव्यता प्रक्रिया]] के संदर्भ में और अनुप्रयोगों में किया जाता है, उदाहरण के लिए [[बायेसियन नेटवर्क]] का अध्ययन, जो सशर्त प्रायिकताओं के संदर्भ में [[प्रायिकता वितरण]] का वर्णन करता है।


==घटनाओं के लिए श्रृंखला नियम==
==घटनाओं के लिए श्रृंखला नियम==

Revision as of 11:01, 12 July 2023

प्रायिकता सिद्धांत में, श्रृंखला नियम[1] (जिसे सामान्य गुणनफल नियम भी कहा जाता है[2][3]) यह वर्णन करता है कि सशर्त प्रायिकताओं का उपयोग करके, आवश्यक रूप से स्वतंत्र न होते हुए भी, यह निश्चित करता है कि घटनाओं या क्रमशः यादृच्छिक चर के संयुक्त वितरण के प्रतिच्छेदन की संभावना की गणना कैसे करें। नियम का उपयोग विशेष रूप से असतत प्रसंभाव्यता प्रक्रिया के संदर्भ में और अनुप्रयोगों में किया जाता है, उदाहरण के लिए बायेसियन नेटवर्क का अध्ययन, जो सशर्त प्रायिकताओं के संदर्भ में प्रायिकता वितरण का वर्णन करता है।

घटनाओं के लिए श्रृंखला नियम

दो घटनाएँ

दो घटनाओं और के लिए, श्रृंखला नियम यह बताता है कि

,

जहां दिए गए में से सप्रतिबंधप्रायिकता को दर्शाता है।

उदाहरण

एक कलश A में 1 काली गेंद और 2 सफेद गेंदें हैं और दूसरे कलश B में 1 काली गेंद और 3 सफेद गेंदें हैं। मान लीजिए कि हम यादृच्छिक रूप से एक कलश चुनते हैं और फिर उस कलश से एक गेंद चुनते हैं। मान लीजिए कि घटना कलश चुन रही है, अर्थात , कहाँ की पूरक घटना है। मान लीजिए कि घटना वह संभावना है जब हम एक सफेद गेंद चुनते हैं। सफ़ेद गेंद चुनने की संभावना, यह देखते हुए कि हमने पहला कलश चुना है, जो है। प्रतिच्छेदन फिर पहले कलश और उसमें से एक सफेद गेंद को चुनने का वर्णन करता है। प्रायिकता की गणना श्रृंखला नियम द्वारा निम्नानुसार की जा सकती है,

निश्चित रूप से अनेक घटनाएँ

उन घटनाओं के लिए जिनके प्रतिच्छेदन की प्रायिकता शून्य नहीं है, तो श्रृंखला नियम के अनुसार वह इस प्रकार होगा