श्रृंखला नियम (संभावना): Difference between revisions
(→उदाहरण) |
(→उदाहरण) |
||
Line 1: | Line 1: | ||
{{Short description|Probability theory concept}} | {{Short description|Probability theory concept}} | ||
{{distinguish|text=गणना में [[श्रृंखला नियम]]}} | {{distinguish|text=गणना में [[श्रृंखला नियम]]}} | ||
प्रायिकता सिद्धांत में, श्रृंखला नियम<ref>{{cite book|first=René L.|last=Schilling|title=माप, अभिन्न, संभाव्यता और प्रक्रियाएं - संभवतः सैद्धांतिक न्यूनतम|location=Technische Universität Dresden, Germany |year=2021|ISBN=979-8-5991-0488-9|page=136ff.}}</ref> (जिसे सामान्य गुणनफल नियम भी कहा जाता है<ref>{{cite book|first=David A.|last=Schum|title=संभाव्य तर्क की साक्ष्यात्मक नींव|year=1994|publisher=Northwestern University Press|isbn=978-0-8101-1821-8|page=49}}</ref><ref>{{cite book|first=Henry E.|last=Klugh|title=Statistics: The Essentials for Research|year=2013|publisher=Psychology Press|isbn=978-1-134-92862-0|page=149|edition=3rd}}</ref>) यह वर्णन करता है कि सशर्त प्रायिकताओं का उपयोग करके, आवश्यक रूप से स्वतंत्र न होते हुए भी, घटनाओं या क्रमशः [[यादृच्छिक चर]] के [[संयुक्त वितरण]] के प्रतिच्छेदन की संभावना की गणना कैसे करें। नियम का उपयोग विशेष रूप से असतत [[प्रसंभाव्यता प्रक्रिया]] के संदर्भ में और अनुप्रयोगों में किया जाता है, उदाहरण के लिए [[बायेसियन नेटवर्क]] का अध्ययन, जो सशर्त प्रायिकताओं के संदर्भ में [[प्रायिकता वितरण]] का वर्णन करता है। | प्रायिकता सिद्धांत में, श्रृंखला नियम<ref>{{cite book|first=René L.|last=Schilling|title=माप, अभिन्न, संभाव्यता और प्रक्रियाएं - संभवतः सैद्धांतिक न्यूनतम|location=Technische Universität Dresden, Germany |year=2021|ISBN=979-8-5991-0488-9|page=136ff.}}</ref> (जिसे सामान्य गुणनफल नियम भी कहा जाता है<ref>{{cite book|first=David A.|last=Schum|title=संभाव्य तर्क की साक्ष्यात्मक नींव|year=1994|publisher=Northwestern University Press|isbn=978-0-8101-1821-8|page=49}}</ref><ref>{{cite book|first=Henry E.|last=Klugh|title=Statistics: The Essentials for Research|year=2013|publisher=Psychology Press|isbn=978-1-134-92862-0|page=149|edition=3rd}}</ref>) यह वर्णन करता है कि सशर्त प्रायिकताओं का उपयोग करके, आवश्यक रूप से स्वतंत्र न होते हुए भी, यह निश्चित करता है कि घटनाओं या क्रमशः [[यादृच्छिक चर]] के [[संयुक्त वितरण]] के प्रतिच्छेदन की संभावना की गणना कैसे करें। नियम का उपयोग विशेष रूप से असतत [[प्रसंभाव्यता प्रक्रिया]] के संदर्भ में और अनुप्रयोगों में किया जाता है, उदाहरण के लिए [[बायेसियन नेटवर्क]] का अध्ययन, जो सशर्त प्रायिकताओं के संदर्भ में [[प्रायिकता वितरण]] का वर्णन करता है। | ||
==घटनाओं के लिए श्रृंखला नियम== | ==घटनाओं के लिए श्रृंखला नियम== |
Revision as of 11:01, 12 July 2023
प्रायिकता सिद्धांत में, श्रृंखला नियम[1] (जिसे सामान्य गुणनफल नियम भी कहा जाता है[2][3]) यह वर्णन करता है कि सशर्त प्रायिकताओं का उपयोग करके, आवश्यक रूप से स्वतंत्र न होते हुए भी, यह निश्चित करता है कि घटनाओं या क्रमशः यादृच्छिक चर के संयुक्त वितरण के प्रतिच्छेदन की संभावना की गणना कैसे करें। नियम का उपयोग विशेष रूप से असतत प्रसंभाव्यता प्रक्रिया के संदर्भ में और अनुप्रयोगों में किया जाता है, उदाहरण के लिए बायेसियन नेटवर्क का अध्ययन, जो सशर्त प्रायिकताओं के संदर्भ में प्रायिकता वितरण का वर्णन करता है।
घटनाओं के लिए श्रृंखला नियम
दो घटनाएँ
दो घटनाओं और के लिए, श्रृंखला नियम यह बताता है कि
- ,
जहां दिए गए में से सप्रतिबंधप्रायिकता को दर्शाता है।
उदाहरण
एक कलश A में 1 काली गेंद और 2 सफेद गेंदें हैं और दूसरे कलश B में 1 काली गेंद और 3 सफेद गेंदें हैं। मान लीजिए कि हम यादृच्छिक रूप से एक कलश चुनते हैं और फिर उस कलश से एक गेंद चुनते हैं। मान लीजिए कि घटना कलश चुन रही है, अर्थात , कहाँ की पूरक घटना है। मान लीजिए कि घटना वह संभावना है जब हम एक सफेद गेंद चुनते हैं। सफ़ेद गेंद चुनने की संभावना, यह देखते हुए कि हमने पहला कलश चुना है, जो है। प्रतिच्छेदन फिर पहले कलश और उसमें से एक सफेद गेंद को चुनने का वर्णन करता है। प्रायिकता की गणना श्रृंखला नियम द्वारा निम्नानुसार की जा सकती है,
निश्चित रूप से अनेक घटनाएँ
उन घटनाओं के लिए जिनके प्रतिच्छेदन की प्रायिकता शून्य नहीं है, तो श्रृंखला नियम के अनुसार वह इस प्रकार होगा
उदाहरण 1
के लिए, अर्थात चार घटनाएं हैं, तो श्रृंखला नियम के अनुसार वह इस प्रकार होगा
उदाहरण 2
हम 52 पत्तों वाले स्काट के डेक से यादृच्छिक रूप से बिना प्रतिस्थापन के 4 पत्ते निकालते हैं। इसकी क्या प्रायिकता है कि हमने 4 इक्के चुने हैं?
सबसे पहले, हम निर्धारित करते हैं। जाहिर है, हमें निम्नलिखित संभावनाएँ मिलती हैं
- .
श्रृंखला नियम लागू करने पर,
- ।
प्रमेय का कथन और उपपत्ति
मान लीजिए एक प्रायिकता समष्टि है।
याद रखें कि दिए गए की सशर्त प्रायिकता को
के रूप में परिभाषित किया गया है।
तब हमारे पास निम्नलिखित प्रमेय है।
श्रृंखला नियम — मान लीजिए एक प्रायिकता समष्टि है। तब . तब
सूत्र प्रत्यावर्तन द्वारा तुरंत अनुसरण करता है
जहां हमने पहले चरण में सप्रतिबंधप्रायिकता की परिभाषा का उपयोग किया।
असतत यादृच्छिक चर के लिए श्रृंखला नियम
दो यादृच्छिक चर
दो असतत यादृच्छिक चर के लिए, हम उपरोक्त परिभाषा में घटनाओंऔर का उपयोग करते हैं, और संयुक्त वितरण को
- के रूप में निर्धारित करते हैं
या
- जहां का प्रायिकता वितरण है और दिए गए का सशर्त प्रायिकता वितरण है।
बहुत सारे यादृच्छिक चर
माना कि और यादृच्छिक चर है। सशर्त प्रायिकता की परिभाषा के अनुसार,
और श्रृंखला नियम का उपयोग करके, हम को निर्धारित करते हैं और फिर हम संयुक्त वितरण को इस प्रकार निर्धारित कर सकते हैं
उदाहरण
के लिए, अर्थात तीन यादृच्छिक चर को ध्यान में रखते हुए। श्रृंखला नियम को निम्नलिखित रूप में लिखा जा सकता है,
यह भी देखें
- [[स्वतंत्रता (प्रायिकता सिद्धांत)
|स्वतंत्रता (प्रायिकता सिद्धांत) ]]- जब एक घटना के घटित होने से दूसरी घटना की संभावना प्रभावित नहीं होती
ग्रन्थसूची
- René L. Schilling (2021), Measure, Integral, Probability & Processes - Probab(ilistical)ly the Theoretical Minimum (1 ed.), Technische Universität Dresden, Germany, ISBN 979-8-5991-0488-9
{{citation}}
: CS1 maint: location missing publisher (link) - William Feller (1968), An Introduction to Probability Theory and Its Applications, vol. I (3 ed.), New York / London / Sydney: Wiley, ISBN 978-0-471-25708-0
- Russell, Stuart J.; Norvig, Peter (2003), Artificial Intelligence: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2, p. 496.
संदर्भ
- ↑ Schilling, René L. (2021). माप, अभिन्न, संभाव्यता और प्रक्रियाएं - संभवतः सैद्धांतिक न्यूनतम. Technische Universität Dresden, Germany. p. 136ff. ISBN 979-8-5991-0488-9.
{{cite book}}
: CS1 maint: location missing publisher (link) - ↑ Schum, David A. (1994). संभाव्य तर्क की साक्ष्यात्मक नींव. Northwestern University Press. p. 49. ISBN 978-0-8101-1821-8.
- ↑ Klugh, Henry E. (2013). Statistics: The Essentials for Research (3rd ed.). Psychology Press. p. 149. ISBN 978-1-134-92862-0.