अध:पतन (बीजगणितीय ज्यामिति): Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (5 revisions imported from alpha:अध:पतन_(बीजगणितीय_ज्यामिति)) |
(No difference)
|
Revision as of 12:13, 21 July 2023
बीजगणितीय ज्यामिति में, अध:पतन या विशेषज्ञता ऐसे भिन्न-भिन्न प्रकारों से जुड़े समूहों की सीमाओं को प्राप्त करने का कार्य करता है। इसके सटीक रूप के लिए उक्त ज्यामिति दी गयी है, जिसे हम इस प्रकार प्रदर्शित कर सकते हैं-
मूल 0 जैसे, एफ़िन या प्रोजेक्टिव रेखा के साथ वक्र C के लिए उक्त प्रकारो या योजनाओं को फाइबर द्वारा प्रदर्शित करते हैं-
सी प्रकारों के समूह बनाये जाते हैं। इसके पश्चात पुनः फाइबर की सीमा के रूप में सोचा जा सकता है, जैसे इसकी एक सीमा को प्रकट करती हैं, जो यह कहता है कि उक्त समूह विशेष फाइबर में परिवर्तित हो जाता है, इसे सीमित करने की प्रक्रिया तब अच्छी तरह व्यवहार करती है, इसे सपाट रूपवाद कहते है, और इस स्थिति में अध:पतन को समतल अध:पतन कहा जाता है। कई लेखक पतन को सपाट मानते हैं।
जब इस प्रकार के समूह विशेष फाइबर से दूर होकर अलग हो जाते है; अर्थात से स्वतंत्र हो जाते है, जैसे होने पर सुसंगत समरूपता तक, सामान्य कण के रूप में प्रकट किया जाता है।
वक्रों का अध:पतन
वक्रों के मापांक के अध्ययन में सबसे महत्वपूर्ण बिंदु मापांक की सीमाओं को समझना है, जो वक्रों के अध:पतन को समझने के समान है।
अपरिवर्तनीयों की स्थिरता
अधकृत रूप से यह इस पर अधिकार करने में उत्तम हैं, इसको सटीक रूप से मात्सुसाका प्रमेय कहता है
- मान लीजिए कि x असतत मूल्यांकन रिंग पर सामान्य योजना अपरिवर्तनीय प्रक्षेप्य योजना है। यदि सामान्य फाइबर पर अधिकार प्राप्त किया जाता है, तो विशेष फाइबर के प्रत्येक अपरिवर्तनीय घटक पर भी अधिकार स्थापित करता है।
अनंतिमल विकृतियाँ
मान लीजिए कि D = k[ε] क्षेत्र k के ऊपर दोहरी संख्याओं का वलय हो रहा है, और Y, k के ऊपर परिमित प्रकार की योजना है। इस परिभाषा के अनुसार, Y की विवृत उपयोजना' YSpec(k) × Spec(D) के मान को प्रकट करती हैं जो इस प्रकार है कि प्रक्षेपण X' → स्पेक डी सपाट है, और इसमें विशेष फाइबर के रूप में x है।
यदि Y = Spec A और' का A[ε] ऐसा कि A[ε]/ I' D और इसके प्रतिबिंब के ऊपर समतल है' में A = A[ε]/ε मान प्राप्त होता है।
सामान्यतः इसे इंगित करने के लिए (s, 0) और x, के लिए दोनों योजनाओं का रूपवाद π द्वारा दिया जाता है, यहाँ पर x' → S को किसी योजना X का विरूपण बीजीय ज्यामिति कहा जाता है, इस प्रकार यदि यह समतल है और S के विशिष्ट बिंदु 0 पर इसका फाइबर एम्बेडिंग का कुछ विकल्प उपलब्ध है।