अनुरूप मानचित्र प्रक्षेपण: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Map projection in which every angle between two curves that cross each other is preserved}} {{More footnotes|date=January 2023}} नक्शानव...")
 
(text)
Line 2: Line 2:


{{More footnotes|date=January 2023}}
{{More footnotes|date=January 2023}}
[[ नक्शानवीसी ]] में, एक [[अनुरूप मानचित्र]] प्रक्षेपण वह होता है जिसमें पृथ्वी पर एक दूसरे को पार करने वाले दो वक्रों (एक गोला या एक दीर्घ[[वृत्त]]) के बीच का प्रत्येक कोण प्रक्षेपण की छवि में संरक्षित होता है; अर्थात्, प्रक्षेपण गणितीय अर्थ में एक अनुरूप मानचित्र है। उदाहरण के लिए, यदि दो सड़कें एक-दूसरे को 39° के कोण पर काटती हैं, तो अनुरूप प्रक्षेपण वाले मानचित्र पर उनकी छवियाँ 39° के कोण पर प्रतिच्छेद करती हैं।
[[ नक्शानवीसी |मानचित्रकारी]] में, एक '''[[अनुरूप मानचित्र]] प्रक्षेपण''' वह होता है जिसमें पृथ्वी पर एक दूसरे को पार करने वाले दो वक्रों (एक गोला या एक दीर्घ[[वृत्त]]) के बीच का प्रत्येक कोण प्रक्षेपण की छवि में संरक्षित होता है; अर्थात्, प्रक्षेपण गणितीय अर्थ में एक अनुरूप मानचित्र है। उदाहरण के लिए, यदि दो सड़कें एक-दूसरे को 39° के कोण पर काटती हैं, तो अनुरूप प्रक्षेपण वाले मानचित्र पर उनकी छवियाँ 39° के कोण पर प्रतिच्छेद करती हैं।


== गुण ==
== गुण ==
एक अनुरूप प्रक्षेपण को ऐसे प्रक्षेपण के रूप में परिभाषित किया जा सकता है जो मानचित्र पर प्रत्येक बिंदु पर स्थानीय रूप से अनुरूप है, यद्यपि संभवतः [[गणितीय विलक्षणता]] के साथ जहां अनुरूपता विफल हो जाती है। इस प्रकार, प्रत्येक छोटी आकृति लगभग मानचित्र पर अपनी छवि के समान होती है। प्रक्षेपण छोटे डोमेन में दो लंबाई के अनुपात को संरक्षित करता है। प्रक्षेपण के सभी टिसोट के संकेतक वृत्त हैं।
एक अनुरूप प्रक्षेपण को ऐसे प्रक्षेपण के रूप में परिभाषित किया जा सकता है जो मानचित्र पर प्रत्येक बिंदु पर स्थानीय रूप से अनुरूप है, यद्यपि संभवतः [[गणितीय विलक्षणता]] के साथ जहां अनुरूपता विफल हो जाती है। इस प्रकार, प्रत्येक छोटी आकृति लगभग मानचित्र पर अपनी छवि के समान होती है। प्रक्षेपण छोटे कार्यछेत्र में दो लंबाई के अनुपात को संरक्षित करता है। प्रक्षेपण के सभी टिसोट के संकेतक वृत्त हैं।


अनुरूप अनुमान केवल छोटे आंकड़े संरक्षित करते हैं। अनुरूप अनुमानों से भी बड़े आंकड़े विकृत हो जाते हैं।
अनुरूप अनुमान केवल छोटे आंकड़े संरक्षित करते हैं। अनुरूप अनुमानों से भी बड़े आंकड़े विकृत हो जाते हैं।


अनुरूप प्रक्षेपण में, कोई भी छोटी आकृति छवि के समान होती है, लेकिन समानता का अनुपात ([[पैमाना (मानचित्र)]]मानचित्र)) स्थान के अनुसार भिन्न होता है, जो अनुरूप प्रक्षेपण की विकृति की व्याख्या करता है।
अनुरूप प्रक्षेपण में, कोई भी छोटी आकृति छवि के समान होती है, लेकिन समानता का अनुपात ([[पैमाना (मानचित्र)|मापक्रम (मानचित्र)]] स्थान के अनुसार भिन्न होता है, जो अनुरूप प्रक्षेपण की विकृति की व्याख्या करता है।


एक अनुरूप प्रक्षेपण में, अक्षांश का वृत्त और [[मेरिडियन (भूगोल)]] मानचित्र पर आयताकार रूप से काटते हैं। जरूरी नहीं कि इसका उलटा सच हो। प्रतिउदाहरण समआयताकार और समान-क्षेत्रीय बेलनाकार प्रक्षेपण (सामान्य पहलुओं के) हैं। ये प्रक्षेपण क्रमशः विभिन्न अनुपातों द्वारा मेरिडियन-वार और समानांतर-वार विस्तारित होते हैं। इस प्रकार, मानचित्र पर समानताएं और याम्योत्तर आयताकार रूप से प्रतिच्छेद करते हैं, लेकिन ये प्रक्षेपण अन्य कोणों को संरक्षित नहीं करते हैं; यानी ये अनुमान अनुरूप नहीं हैं।
एक अनुरूप प्रक्षेपण में, अक्षांश का वृत्त और [[मेरिडियन (भूगोल)]] मानचित्र पर आयताकार रूप से काटते हैं। जरूरी नहीं कि इसका उलटा सच हो। प्रतिउदाहरण समआयताकार और समान-क्षेत्रीय बेलनाकार प्रक्षेपण (सामान्य पहलुओं के) हैं। ये प्रक्षेपण क्रमशः विभिन्न अनुपातों द्वारा मेरिडियन-वार और समानांतर-वार विस्तारित होते हैं। इस प्रकार, मानचित्र पर समानताएं और याम्योत्तर आयताकार रूप से प्रतिच्छेद करते हैं, लेकिन ये प्रक्षेपण अन्य कोणों को संरक्षित नहीं करते हैं; यानी ये अनुमान अनुरूप नहीं हैं।


जैसा कि 1775 में [[लियोनहार्ड यूलर]] द्वारा सिद्ध किया गया था, एक अनुरूप मानचित्र प्रक्षेपण समान-क्षेत्रीय नहीं हो सकता है, न ही एक समान-क्षेत्रीय प्रक्षेपण|समान-क्षेत्रीय मानचित्र प्रक्षेपण अनुरूप हो सकता है।<ref>{{Harv|Euler|1778}}</ref> यह [[कार्ल फ्रेडरिक गॉस]] के 1827 एग्रेगियम प्रमेय [उल्लेखनीय प्रमेय] का भी परिणाम है
जैसा कि 1775 में [[लियोनहार्ड यूलर]] द्वारा सिद्ध किया गया था, एक अनुरूप मानचित्र प्रक्षेपण समान-क्षेत्रीय नहीं हो सकता है, न ही एक समान-क्षेत्रीय प्रक्षेपण|समान-क्षेत्रीय मानचित्र प्रक्षेपण अनुरूप हो सकता है। <ref>{{Harv|Euler|1778}}</ref> यह [[कार्ल फ्रेडरिक गॉस]] के 1827 एग्रेगियम प्रमेय [उल्लेखनीय प्रमेय] का भी परिणाम है


== अनुरूप अनुमानों की सूची ==
== अनुरूप प्रक्षेप की सूची ==
*[[मर्केटर प्रक्षेपण]] (अनुरूप बेलनाकार प्रक्षेपण)
*[[मर्केटर प्रक्षेपण]] (अनुरूप बेलनाकार प्रक्षेपण)
** सामान्य पहलू का मर्केटर प्रक्षेपण (प्रत्येक [[रंब रेखा]] मानचित्र पर एक सीधी रेखा के रूप में खींची जाती है।)
** सामान्य पहलू का मर्केटर प्रक्षेपण (प्रत्येक [[रंब रेखा]] मानचित्र पर एक सीधी रेखा के रूप में खींची जाती है।)
**[[अनुप्रस्थ मर्केटर प्रक्षेपण]]
**[[अनुप्रस्थ मर्केटर प्रक्षेपण]]
***गॉस-क्रुगर समन्वय प्रणाली (यह प्रक्षेपण एक दीर्घवृत्त पर केंद्रीय मध्याह्न रेखा पर लंबाई को संरक्षित करता है)
***गॉस-क्रुगर समन्वय प्रणाली (यह प्रक्षेपण एक दीर्घवृत्त पर केंद्रीय मध्याह्न रेखा पर लंबाई को संरक्षित करता है)
**ओब्लिक मर्केटर प्रक्षेपण
**तिर्यक मर्केटर प्रक्षेपण
***अंतरिक्ष-ऑब्लिक मर्केटर प्रक्षेपण (पृथ्वी के निकट अनुरूपता के साथ घूमने के साथ उपग्रह कक्षाओं के लिए ओब्लिक मर्केटर प्रक्षेपण से एक संशोधित प्रक्षेपण)
***अंतरिक्ष-तिर्यक मर्केटर प्रक्षेपण (पृथ्वी के निकट अनुरूपता के साथ घूमने के साथ उपग्रह कक्षाओं के लिए तिर्यक मर्केटर प्रक्षेपण से एक संशोधित प्रक्षेपण)
*[[लैंबर्ट अनुरूप शंकु प्रक्षेपण]]
*[[लैंबर्ट अनुरूप शंकु प्रक्षेपण]]
**ऑब्लिक कंफर्मल शंकु प्रक्षेपण (यह प्रक्षेपण कभी-कभी लंबे आकार के क्षेत्रों के लिए उपयोग किया जाता है, जैसे [[ अमेरिका की ]] महाद्वीप या [[जापानी द्वीपसमूह]]।)
**तिर्यक अनुरूप शंकु प्रक्षेपण (यह प्रक्षेपण कभी-कभी लंबे आकार के क्षेत्रों के लिए उपयोग किया जाता है, जैसे[[ अमेरिका की ]]महाद्वीप या [[जापानी द्वीपसमूह]]।)
*स्टीरियोग्राफ़िक मानचित्र प्रक्षेपण (अनुरूप अज़ीमुथल प्रक्षेपण। पृथ्वी पर प्रत्येक वृत्त मानचित्र पर एक वृत्त या एक सीधी रेखा के रूप में खींचा गया है।)
*त्रिविम प्रक्षेपण (अनुरूप दिगंशीय प्रक्षेप। पृथ्वी पर प्रत्येक वृत्त मानचित्र पर एक वृत्त या एक सीधी रेखा के रूप में खींचा गया है।)
**मिलर ओब्लेटेड [[त्रिविम मानचित्र प्रक्षेपण]][[ अफ़्रीका ]] और [[यूरोप]] महाद्वीपों के लिए संशोधित स्टीरियोग्राफिक प्रोजेक्शन।)<ref>{{Cite web | url=https://www.jasondavies.com/maps/modified-stereographic/miller/ | title=Miller Oblated Stereographic Projection}}</ref>
**मिलर लघ्वक्ष [[त्रिविम मानचित्र प्रक्षेपण]][[ अफ़्रीका ]]और [[यूरोप]] महाद्वीपों के लिए संशोधित त्रिविम प्रक्षेपण।)<ref>{{Cite web | url=https://www.jasondavies.com/maps/modified-stereographic/miller/ | title=Miller Oblated Stereographic Projection}}</ref>
**जीएस50 प्रक्षेपण (यह प्रक्षेपण [[जटिल संख्या]]ओं पर एक [[बहुपद]] द्वारा समायोजन के साथ एक त्रिविम प्रक्षेपण से बनाया गया है।)
**जीएस50 प्रक्षेपण (यह प्रक्षेपण [[जटिल संख्या]]ओं पर एक [[बहुपद]] द्वारा समायोजन के साथ एक त्रिविम प्रक्षेपण से बनाया गया है।)
*[[लिट्रो प्रक्षेपण]] (अनुरूप रेट्रो-अजीमुथल प्रक्षेपण)
*[[लिट्रो प्रक्षेपण]] (अनुरूप रेट्रो-अजीमुथल प्रक्षेपण)
*लैग्रेंज प्रक्षेपण (एक पॉलीकोनिक प्रक्षेपण, और एक लैंबर्ट अनुरूप शंकु प्रक्षेपण और एक मोबियस परिवर्तन की एक संरचना।)
*लैग्रेंज प्रक्षेपण (एक बहुशंकुक प्रक्षेप, और एक लैंबर्ट अनुरूप शंकु प्रक्षेपण और एक मोबियस परिवर्तन की एक संरचना।)
**अगस्त एपिसाइक्लोइडल प्रक्षेपण (वृत्त में गोले के लैग्रेंज प्रक्षेपण की एक संरचना और जटिल संख्याओं पर डिग्री 3 का बहुपद।)
**अगस्त एपिसाइक्लोइडल प्रक्षेपण (वृत्त में गोले के लैग्रेंज प्रक्षेपण की एक संरचना और जटिल संख्याओं पर डिग्री 3 का बहुपद।)
*अण्डाकार फ़ंक्शन का अनुप्रयोग
*अण्डाकार फलन का अनुप्रयोग
**[[पियर्स क्विनकुंशियल प्रक्षेपण]] (यह पृथ्वी को चार एकवचन बिंदुओं को छोड़कर अनुरूप रूप से एक वर्ग में प्रक्षेपित करता है।)
**[[पियर्स क्विनकुंशियल प्रक्षेपण]] (यह पृथ्वी को चार एकवचन बिंदुओं को छोड़कर अनुरूप रूप से एक वर्ग में प्रक्षेपित करता है।)
**चतुष्फलक में विश्व का [[ली अनुरूप प्रक्षेपण]]
**चतुष्फलक में विश्व का [[ली अनुरूप प्रक्षेपण]]
Line 36: Line 36:
== अनुप्रयोग ==
== अनुप्रयोग ==


=== बड़े पैमाने ===
=== बड़े मापक्रम ===
कई बड़े पैमाने के मानचित्र अनुरूप अनुमानों का उपयोग करते हैं क्योंकि बड़े पैमाने के मानचित्रों में आंकड़े काफी छोटे माने जा सकते हैं। मानचित्रों पर आंकड़े लगभग उनके भौतिक समकक्षों के समान हैं।
कई बड़े मापक्रम के मानचित्र अनुरूप अनुमानों का उपयोग करते हैं क्योंकि बड़े मापक्रम के मानचित्रों में आंकड़े काफी छोटे माने जा सकते हैं। मानचित्रों पर आंकड़े लगभग उनके भौतिक समकक्षों के समान हैं।


एक गैर-अनुरूप प्रक्षेपण का उपयोग एक सीमित डोमेन में किया जा सकता है जैसे कि प्रक्षेपण स्थानीय रूप से अनुरूप हो। कई मानचित्रों को एक साथ चिपकाने से गोलाई बहाल हो जाती है। कई मानचित्रों से एक नई शीट बनाने या केंद्र बदलने के लिए, मुख्य भाग को फिर से प्रक्षेपित करना होगा।
एक गैर-अनुरूप प्रक्षेपण का उपयोग एक सीमित कार्यछेत्र में किया जा सकता है जैसे कि प्रक्षेपण स्थानीय रूप से अनुरूप हो। कई मानचित्रों को एक साथ चिपकाने से गोलाई बहाल हो जाती है। कई मानचित्रों से एक नई शीट बनाने या केंद्र बदलने के लिए, मुख्य भाग को फिर से प्रक्षेपित करना होगा।


निर्बाध ऑनलाइन मानचित्र बहुत बड़े मर्केटर प्रक्षेपण हो सकते हैं, जिससे कोई भी स्थान मानचित्र का केंद्र बन सकता है, फिर मानचित्र अनुरूप रहता है। हालाँकि, इस तरह के प्रक्षेपण का उपयोग करके दो दूर के आंकड़ों की लंबाई या क्षेत्रों की तुलना करना मुश्किल है।
निर्बाध ऑनलाइन मानचित्र बहुत बड़े मर्केटर प्रक्षेपण हो सकते हैं, जिससे कोई भी स्थान मानचित्र का केंद्र बन सकता है, फिर मानचित्र अनुरूप रहता है। हालाँकि, इस तरह के प्रक्षेपण का उपयोग करके दो दूर के आंकड़ों की लंबाई या क्षेत्रों की तुलना करना कठिन है।


[[यूनिवर्सल ट्रांसवर्स मर्केटर समन्वय प्रणाली]] और फ्रांस में :fr:प्रोजेक्शन कॉनिक कन्फॉर्म डी लैम्बर्ट#लैम्बर्ट ज़ोन ऐसे अनुमान हैं जो निर्बाधता और स्केल परिवर्तनशीलता के बीच व्यापार-बंद का समर्थन करते हैं।
[[यूनिवर्सल ट्रांसवर्स मर्केटर समन्वय प्रणाली|सार्विक आड़ा मरकेट समन्वय प्रणाली]] और फ्रांस में लैंबर्ट प्रणाली ऐसे अनुमान हैं जो निर्बाधता और मापक्रम परिवर्तनशीलता के बीच व्यापार-बंद का समर्थन करते हैं।


=== छोटे पैमाने के लिए ===
=== छोटे मापक्रम के लिए ===
[[File:GS-50 projection with lines of constant scale.svg|thumb|GS50 प्रक्षेपण के पैमाने कारकों का एक समोच्च चार्ट]]दिशाओं को प्रतिबिंबित करने वाले मानचित्र, जैसे कि [[समुद्री चार्ट]] या वैमानिकी चार्ट, अनुरूप अनुमानों द्वारा प्रक्षेपित किए जाते हैं। ऐसे मानों को दर्शाने वाले मानचित्र जिनकी ग्रेडिएंट महत्वपूर्ण हैं, जैसे कि वायुमंडलीय दबाव वाला [[मौसम मानचित्र]], भी अनुरूप अनुमानों द्वारा प्रक्षेपित किए जाते हैं।
[[File:GS-50 projection with lines of constant scale.svg|thumb|GS50 प्रक्षेपण के मापक्रम कारकों का एक समोच्च तालिका]]दिशाओं को प्रतिबिंबित करने वाले मानचित्र, जैसे कि [[समुद्री चार्ट|समुद्री तालिका]] या वैमानिकी तालिका, अनुरूप अनुमानों द्वारा प्रक्षेपित किए जाते हैं। ऐसे मानों को दर्शाने वाले मानचित्र जिनकी अनुप्रवण महत्वपूर्ण हैं, जैसे कि वायुमंडलीय दबाव वाला [[मौसम मानचित्र]], भी अनुरूप अनुमानों द्वारा प्रक्षेपित किए जाते हैं।


छोटे पैमाने के मानचित्रों में अनुरूप प्रक्षेपण में बड़े पैमाने पर भिन्नताएं होती हैं, इसलिए हाल के विश्व मानचित्र अन्य अनुमानों का उपयोग करते हैं। ऐतिहासिक रूप से, कई विश्व मानचित्र अनुरूप प्रक्षेपणों द्वारा तैयार किए जाते हैं, जैसे मर्केटर मानचित्र या गोलार्ध मानचित्र [[त्रिविम प्रक्षेपण]] द्वारा।
छोटे मापक्रम के मानचित्रों में अनुरूप प्रक्षेपण में बड़े मापक्रम पर भिन्नताएं होती हैं, इसलिए हाल के विश्व मानचित्र अन्य अनुमानों का उपयोग करते हैं। ऐतिहासिक रूप से, कई विश्व मानचित्र अनुरूप प्रक्षेपणों द्वारा तैयार किए जाते हैं, जैसे मर्केटर मानचित्र या गोलार्ध मानचित्र [[त्रिविम प्रक्षेपण]] द्वारा है।


बड़े क्षेत्रों वाले अनुरूप मानचित्र स्थानों के अनुसार अलग-अलग होते हैं, इसलिए लंबाई या क्षेत्रों की तुलना करना मुश्किल होता है। हालाँकि, कुछ तकनीकों के लिए आवश्यक है कि मेरिडियन पर 1 डिग्री की लंबाई = 111 किमी = 60 [[समुद्री मील]] हो। गैर-अनुरूप मानचित्रों में, ऐसी तकनीकें उपलब्ध नहीं होती हैं क्योंकि एक बिंदु पर समान लंबाई मानचित्र पर लंबाई में भिन्न होती है।
बड़े क्षेत्रों वाले अनुरूप मानचित्र स्थानों के अनुसार अलग-अलग होते हैं, इसलिए लंबाई या क्षेत्रों की तुलना करना कठिन होता है। हालाँकि, कुछ तकनीकों के लिए आवश्यक है कि मेरिडियन पर 1 डिग्री की लंबाई = 111 किमी = 60 [[समुद्री मील]] है। गैर-अनुरूप मानचित्रों में, ऐसी तकनीकें उपलब्ध नहीं होती हैं क्योंकि एक बिंदु पर समान लंबाई मानचित्र पर लंबाई में भिन्न होती है।


मर्केटर या स्टीरियोग्राफ़िक अनुमानों में, पैमाने [[अक्षांश]] के अनुसार भिन्न होते हैं, इसलिए अक्षांशों के अनुसार बार स्केल अक्सर जोड़े जाते हैं। तिरछे पहलू जैसे जटिल प्रक्षेपणों में। स्केल कारकों के समोच्च चार्ट कभी-कभी जोड़े जाते हैं।
मर्केटर या त्रिविम अनुमानों में, मापक्रम [[अक्षांश]] के अनुसार भिन्न होते हैं, इसलिए अक्षांशों के अनुसार बार मापक्रम प्रायः जोड़े जाते हैं। जटिल प्रक्षेपणों में जैसे कि तिरछा पहलू है। तालिका कारकों के समोच्च तालिका कभी-कभी जोड़े जाते हैं।


==यह भी देखें==
==यह भी देखें==

Revision as of 13:05, 8 July 2023

मानचित्रकारी में, एक अनुरूप मानचित्र प्रक्षेपण वह होता है जिसमें पृथ्वी पर एक दूसरे को पार करने वाले दो वक्रों (एक गोला या एक दीर्घवृत्त) के बीच का प्रत्येक कोण प्रक्षेपण की छवि में संरक्षित होता है; अर्थात्, प्रक्षेपण गणितीय अर्थ में एक अनुरूप मानचित्र है। उदाहरण के लिए, यदि दो सड़कें एक-दूसरे को 39° के कोण पर काटती हैं, तो अनुरूप प्रक्षेपण वाले मानचित्र पर उनकी छवियाँ 39° के कोण पर प्रतिच्छेद करती हैं।

गुण

एक अनुरूप प्रक्षेपण को ऐसे प्रक्षेपण के रूप में परिभाषित किया जा सकता है जो मानचित्र पर प्रत्येक बिंदु पर स्थानीय रूप से अनुरूप है, यद्यपि संभवतः गणितीय विलक्षणता के साथ जहां अनुरूपता विफल हो जाती है। इस प्रकार, प्रत्येक छोटी आकृति लगभग मानचित्र पर अपनी छवि के समान होती है। प्रक्षेपण छोटे कार्यछेत्र में दो लंबाई के अनुपात को संरक्षित करता है। प्रक्षेपण के सभी टिसोट के संकेतक वृत्त हैं।

अनुरूप अनुमान केवल छोटे आंकड़े संरक्षित करते हैं। अनुरूप अनुमानों से भी बड़े आंकड़े विकृत हो जाते हैं।

अनुरूप प्रक्षेपण में, कोई भी छोटी आकृति छवि के समान होती है, लेकिन समानता का अनुपात (मापक्रम (मानचित्र) स्थान के अनुसार भिन्न होता है, जो अनुरूप प्रक्षेपण की विकृति की व्याख्या करता है।

एक अनुरूप प्रक्षेपण में, अक्षांश का वृत्त और मेरिडियन (भूगोल) मानचित्र पर आयताकार रूप से काटते हैं। जरूरी नहीं कि इसका उलटा सच हो। प्रतिउदाहरण समआयताकार और समान-क्षेत्रीय बेलनाकार प्रक्षेपण (सामान्य पहलुओं के) हैं। ये प्रक्षेपण क्रमशः विभिन्न अनुपातों द्वारा मेरिडियन-वार और समानांतर-वार विस्तारित होते हैं। इस प्रकार, मानचित्र पर समानताएं और याम्योत्तर आयताकार रूप से प्रतिच्छेद करते हैं, लेकिन ये प्रक्षेपण अन्य कोणों को संरक्षित नहीं करते हैं; यानी ये अनुमान अनुरूप नहीं हैं।

जैसा कि 1775 में लियोनहार्ड यूलर द्वारा सिद्ध किया गया था, एक अनुरूप मानचित्र प्रक्षेपण समान-क्षेत्रीय नहीं हो सकता है, न ही एक समान-क्षेत्रीय प्रक्षेपण|समान-क्षेत्रीय मानचित्र प्रक्षेपण अनुरूप हो सकता है। [1] यह कार्ल फ्रेडरिक गॉस के 1827 एग्रेगियम प्रमेय [उल्लेखनीय प्रमेय] का भी परिणाम है

अनुरूप प्रक्षेप की सूची

  • मर्केटर प्रक्षेपण (अनुरूप बेलनाकार प्रक्षेपण)
    • सामान्य पहलू का मर्केटर प्रक्षेपण (प्रत्येक रंब रेखा मानचित्र पर एक सीधी रेखा के रूप में खींची जाती है।)
    • अनुप्रस्थ मर्केटर प्रक्षेपण
      • गॉस-क्रुगर समन्वय प्रणाली (यह प्रक्षेपण एक दीर्घवृत्त पर केंद्रीय मध्याह्न रेखा पर लंबाई को संरक्षित करता है)
    • तिर्यक मर्केटर प्रक्षेपण
      • अंतरिक्ष-तिर्यक मर्केटर प्रक्षेपण (पृथ्वी के निकट अनुरूपता के साथ घूमने के साथ उपग्रह कक्षाओं के लिए तिर्यक मर्केटर प्रक्षेपण से एक संशोधित प्रक्षेपण)
  • लैंबर्ट अनुरूप शंकु प्रक्षेपण
    • तिर्यक अनुरूप शंकु प्रक्षेपण (यह प्रक्षेपण कभी-कभी लंबे आकार के क्षेत्रों के लिए उपयोग किया जाता है, जैसेअमेरिका की महाद्वीप या जापानी द्वीपसमूह।)
  • त्रिविम प्रक्षेपण (अनुरूप दिगंशीय प्रक्षेप। पृथ्वी पर प्रत्येक वृत्त मानचित्र पर एक वृत्त या एक सीधी रेखा के रूप में खींचा गया है।)
  • लिट्रो प्रक्षेपण (अनुरूप रेट्रो-अजीमुथल प्रक्षेपण)
  • लैग्रेंज प्रक्षेपण (एक बहुशंकुक प्रक्षेप, और एक लैंबर्ट अनुरूप शंकु प्रक्षेपण और एक मोबियस परिवर्तन की एक संरचना।)
    • अगस्त एपिसाइक्लोइडल प्रक्षेपण (वृत्त में गोले के लैग्रेंज प्रक्षेपण की एक संरचना और जटिल संख्याओं पर डिग्री 3 का बहुपद।)
  • अण्डाकार फलन का अनुप्रयोग

अनुप्रयोग

बड़े मापक्रम

कई बड़े मापक्रम के मानचित्र अनुरूप अनुमानों का उपयोग करते हैं क्योंकि बड़े मापक्रम के मानचित्रों में आंकड़े काफी छोटे माने जा सकते हैं। मानचित्रों पर आंकड़े लगभग उनके भौतिक समकक्षों के समान हैं।

एक गैर-अनुरूप प्रक्षेपण का उपयोग एक सीमित कार्यछेत्र में किया जा सकता है जैसे कि प्रक्षेपण स्थानीय रूप से अनुरूप हो। कई मानचित्रों को एक साथ चिपकाने से गोलाई बहाल हो जाती है। कई मानचित्रों से एक नई शीट बनाने या केंद्र बदलने के लिए, मुख्य भाग को फिर से प्रक्षेपित करना होगा।

निर्बाध ऑनलाइन मानचित्र बहुत बड़े मर्केटर प्रक्षेपण हो सकते हैं, जिससे कोई भी स्थान मानचित्र का केंद्र बन सकता है, फिर मानचित्र अनुरूप रहता है। हालाँकि, इस तरह के प्रक्षेपण का उपयोग करके दो दूर के आंकड़ों की लंबाई या क्षेत्रों की तुलना करना कठिन है।

सार्विक आड़ा मरकेट समन्वय प्रणाली और फ्रांस में लैंबर्ट प्रणाली ऐसे अनुमान हैं जो निर्बाधता और मापक्रम परिवर्तनशीलता के बीच व्यापार-बंद का समर्थन करते हैं।

छोटे मापक्रम के लिए

GS50 प्रक्षेपण के मापक्रम कारकों का एक समोच्च तालिका

दिशाओं को प्रतिबिंबित करने वाले मानचित्र, जैसे कि समुद्री तालिका या वैमानिकी तालिका, अनुरूप अनुमानों द्वारा प्रक्षेपित किए जाते हैं। ऐसे मानों को दर्शाने वाले मानचित्र जिनकी अनुप्रवण महत्वपूर्ण हैं, जैसे कि वायुमंडलीय दबाव वाला मौसम मानचित्र, भी अनुरूप अनुमानों द्वारा प्रक्षेपित किए जाते हैं।

छोटे मापक्रम के मानचित्रों में अनुरूप प्रक्षेपण में बड़े मापक्रम पर भिन्नताएं होती हैं, इसलिए हाल के विश्व मानचित्र अन्य अनुमानों का उपयोग करते हैं। ऐतिहासिक रूप से, कई विश्व मानचित्र अनुरूप प्रक्षेपणों द्वारा तैयार किए जाते हैं, जैसे मर्केटर मानचित्र या गोलार्ध मानचित्र त्रिविम प्रक्षेपण द्वारा है।

बड़े क्षेत्रों वाले अनुरूप मानचित्र स्थानों के अनुसार अलग-अलग होते हैं, इसलिए लंबाई या क्षेत्रों की तुलना करना कठिन होता है। हालाँकि, कुछ तकनीकों के लिए आवश्यक है कि मेरिडियन पर 1 डिग्री की लंबाई = 111 किमी = 60 समुद्री मील है। गैर-अनुरूप मानचित्रों में, ऐसी तकनीकें उपलब्ध नहीं होती हैं क्योंकि एक बिंदु पर समान लंबाई मानचित्र पर लंबाई में भिन्न होती है।

मर्केटर या त्रिविम अनुमानों में, मापक्रम अक्षांश के अनुसार भिन्न होते हैं, इसलिए अक्षांशों के अनुसार बार मापक्रम प्रायः जोड़े जाते हैं। जटिल प्रक्षेपणों में जैसे कि तिरछा पहलू है। तालिका कारकों के समोच्च तालिका कभी-कभी जोड़े जाते हैं।

यह भी देखें

टिप्पणियाँ

  1. (Euler 1778)
  2. "Miller Oblated Stereographic Projection".


संदर्भ


अग्रिम पठन