:<math>U^{2^{j}}| \psi\rangle = e^{ 2\pi i 2^{j}\theta}|\psi \rangle</math>.
:<math>U^{2^{j}}| \psi\rangle = e^{ 2\pi i 2^{j}\theta}|\psi \rangle</math>.
कुल मिलाकर कंट्रोल्ड_गेट्स द्वारा दो रजिस्टरों पर परिवर्तन लागू किया गया <math>U, U^{2}, U^{2^2}, \ldots, U^{2^{n - 1}}</math> है<math display="block">|k\rangle|\psi\rangle \mapsto |k\rangle U^{k}|\psi\rangle</math>इसे के विघटन द्वारा देखा जा सकता है <math>k</math> इसके बिटस्ट्रिंग में <math>k_{n - 1}k_{n - 2}\ldots k_1 k_0</math> और [[ बाइनरी संख्या ]] <math>2^{n - 1}k_{n - 1} + 2^{n - 2}k_{n - 2} + \ldots + 2 k_1 + k_0</math>, कहाँ <math>k_{n - 1}, \ldots, k_1, k_0 \in \{0, 1\}</math>. स्पष्ट रूप से, <math>U^k</math> बन जाता है<math display="block">U^{2^{n - 1}k_{n - 1} + \ldots + 2^2 k_2 + 2 k_1 + k_0} = U^{2^{n - 1}k_{n - 1}}\ldots U^{2^2 k_2} U^{2 k_1} U^{k_0}</math>प्रत्येक <math>U^{2^{j}k_j}</math> केवल तभी लागू होगा जब qubit <math>k_j</math> है <math>1</math>, जिसका अर्थ है कि यह उस बिट द्वारा नियंत्रित होता है। इसलिए समग्र परिवर्तन <math>|k\rangle U^k |\psi\rangle</math> नियंत्रित के समतुल्य है <math>U^{2^j}</math> प्रत्येक से द्वार <math>j</math>-वें क्वबिट.
कुल मिलाकर कंट्रोल्ड_गेट्स द्वारा दो रजिस्टरों पर परिवर्तन लागू किया गया <math>U, U^{2}, U^{2^2}, \ldots, U^{2^{n - 1}}</math> है<math display="block">|k\rangle|\psi\rangle \mapsto |k\rangle U^{k}|\psi\rangle</math>इसे के विघटन <math>k</math> द्वारा देखा जा सकता हैं, बिटस्ट्रिंग में <math>k_{n - 1}k_{n - 2}\ldots k_1 k_0</math> और [[ बाइनरी संख्या ]] <math>2^{n - 1}k_{n - 1} + 2^{n - 2}k_{n - 2} + \ldots + 2 k_1 + k_0</math>, जहाँ <math>k_{n - 1}, \ldots, k_1, k_0 \in \{0, 1\}</math>. स्पष्ट रूप से, <math>U^k</math> बन जाता है<math display="block">U^{2^{n - 1}k_{n - 1} + \ldots + 2^2 k_2 + 2 k_1 + k_0} = U^{2^{n - 1}k_{n - 1}}\ldots U^{2^2 k_2} U^{2 k_1} U^{k_0}</math>प्रत्येक <math>U^{2^{j}k_j}</math> केवल तभी लागू होगा जब qubit <math>k_j</math> है <math>1</math>, जिसका अर्थ है कि यह उस बिट द्वारा नियंत्रित होता है। इसलिए समग्र परिवर्तन <math>|k\rangle U^k |\psi\rangle</math> नियंत्रित के समतुल्य है <math>U^{2^j}</math> प्रत्येक <math>j</math>-वें क्वबिट से गेट.
इसलिए, राज्य को नियंत्रित द्वारा बदल दिया जाएगा <math>U^{2^j}</math> ऐसे गेट:<math display="block">\frac{1}{\sqrt{2^n}} \sum_{j = 0}^{2^n - 1} |j\rangle |\psi\rangle \mapsto \frac{1}{\sqrt{2^n}} \sum_{j = 0}^{2^n - 1} e^{2\pi i j \theta}|j\rangle|\psi\rangle</math>इस बिंदु पर, eigenvector के साथ दूसरे रजिस्टर की आवश्यकता नहीं है। चरण आकलन के दूसरे दौर में इसका पुन: उपयोग किया जा सकता है। बिना राज्य <math>|\psi\rangle</math> है
इसलिए, अवस्था को इस प्रकार नियंत्रित गेटों <math>U^{2^j}</math> द्वारा रूपांतरित किया जाएगा:<math display="block">\frac{1}{\sqrt{2^n}} \sum_{j = 0}^{2^n - 1} |j\rangle |\psi\rangle \mapsto \frac{1}{\sqrt{2^n}} \sum_{j = 0}^{2^n - 1} e^{2\pi i j \theta}|j\rangle|\psi\rangle</math>इस बिंदु पर eigenvector के साथ दूसरे रजिस्टर की आवश्यकता नहीं है। चरण आकलन के दूसरे दौर में इसका पुन: उपयोग किया जा सकता है। बिना <math>|\psi\rangle</math> वाली अवस्था हैं:
<math>\frac{1}{\sqrt{2^n}} \sum_{j = 0}^{2^n - 1} e^{2\pi i j \theta}|j\rangle</math>
<math>\frac{1}{\sqrt{2^n}} \sum_{j = 0}^{2^n - 1} e^{2\pi i j \theta}|j\rangle</math>
क्वांटम कम्प्यूटिंग में, क्वांटम चरण अनुमान एल्गोरिदम (जिसे क्वांटम आइजेनवैल्यू अनुमान एल्गोरिदम भी कहा जाता है), एक एकात्मक ऑपरेटर के आइजेनवेक्टर के चरण (या आइजेनवैल्यू) का अनुमान लगाने के लिए एक क्वांटम एल्गोरिथ्म है। अधिक सटीक रूप से, एक एकात्मक मैट्रिक्स और एक क्वांटम अवस्था दी गई है, जिससे कि ऐसा है कि , एल्गोरिथम के मूल्य का अनुमान लगाता है के मान का अनुमान लगाता है योगात्मक त्रुटि के भीतर उच्च संभावना के साथ का उपयोग करके क्वैबिट्स (इजेनवेक्टर स्थिति को एन्कोड करने के लिए उपयोग किए जाने वाले क्वैबिट्स की गिनती किए बिना) और क्वांटम लॉजिक गेट नियंत्रित-यू संचालन। एल्गोरिदम को शुरुआत में 1995 में एलेक्सी किताएव द्वारा पेश किया गया था।[1][2]: 246
मान लीजिए कि U एक एकात्मक संचालिका है जो एक eigenvalues और eigenvectors के साथ m qubit पर काम करता है ऐसा है कि .
हम और का eigenvalue ज्ञात करना चाहेंगे। जो इस मामले में में परिशुद्धता के एक सीमित स्तर तक चरण का अनुमान लगाने के बराबर है। हम eigenvalue को इस रूप में लिख सकते हैं, क्योंकि U एक जटिल सदिश समष्टि पर एक एकात्मक संचालिका है, इसलिए इसके eigenvalues पूर्ण मान 1 के साथ जटिल संख्याएँ होनी चाहिए।
एल्गोरिदम
क्वांटम चरण आकलन के लिए सर्किट।
स्थापित करना
इनपुट में दो क्वांटम_रजिस्टर (अर्थात्, दो भाग) होते हैं: ऊपरी क्वैबिट में पहला रजिस्टर होता है और निचला क्वैबिट दूसरा रजिस्टर होता है।
सिस्टम की प्रारंभिक स्थिति है:
एन-बिट पहले रजिस्टर पर एन-बिट हैडामर्ड गेट ऑपरेशन लागू करने के बाद स्थिति बन जाती है:
.
मान लीजिए कि eigenvector के साथ एकात्मक संचालिका ऐसा है कि इस प्रकार,
.
कुल मिलाकर कंट्रोल्ड_गेट्स द्वारा दो रजिस्टरों पर परिवर्तन लागू किया गया है
इसे के विघटन द्वारा देखा जा सकता हैं, बिटस्ट्रिंग में और बाइनरी संख्या , जहाँ . स्पष्ट रूप से, बन जाता है
प्रत्येक केवल तभी लागू होगा जब qubit है , जिसका अर्थ है कि यह उस बिट द्वारा नियंत्रित होता है। इसलिए समग्र परिवर्तन नियंत्रित के समतुल्य है प्रत्येक -वें क्वबिट से गेट.
इसलिए, अवस्था को इस प्रकार नियंत्रित गेटों द्वारा रूपांतरित किया जाएगा:
इस बिंदु पर eigenvector के साथ दूसरे रजिस्टर की आवश्यकता नहीं है। चरण आकलन के दूसरे दौर में इसका पुन: उपयोग किया जा सकता है। बिना वाली अवस्था हैं:
व्युत्क्रम क्वांटम फूरियर को लागू करने पर परिवर्तन होता है
पैदावार
हम इसके मूल्य का अनुमान लगा सकते हैं गोल करके निकटतम पूर्णांक तक. इस का मतलब है कि कहाँ के निकटतम पूर्णांक है और अंतर संतुष्ट .
इस अपघटन का उपयोग करके हम स्थिति को इस प्रकार पुनः लिख सकते हैं कहाँ
माप
पहले रजिस्टर पर कम्प्यूटेशनल आधार पर क्वांटम यांत्रिकी में माप करने से परिणाम मिलता है संभाव्यता के साथ
यह इस प्रकार है कि अगर , तभी के रूप में लिखा जा सकता है , व्यक्ति को हमेशा परिणाम मिलता है . दूसरी ओर, यदि , संभावना पढ़ती है
इस अभिव्यक्ति से हम यह देख सकते हैं कब . इसे देखने के लिए हम इसे की परिभाषा से देखते हैं हमारे यहां असमानता है , और इस तरह:[3]: 157 [4]: 348
हम यह निष्कर्ष निकालते हैं कि एल्गोरिथम हमेशा सर्वोत्तम प्रदान करता है -बिट का अनुमान उच्च संभावना के साथ. द्वारा qubits की संख्या में वृद्धि करके और उन अंतिम क्वैबिट्स को अनदेखा करके हम इसकी संभावना बढ़ा सकते हैं .[4]
उदाहरण
एल्गोरिथ्म के सबसे सरल संभव उदाहरण पर विचार करें, जहां केवल qubit, एन्कोड करने के लिए आवश्यक qubits के शीर्ष पर , शामिल है। मान लीजिए कि eigenvalue पढ़ता . एल्गोरिथम का पहला भाग एक-क्विबिट स्थिति उत्पन्न करता है . इस मामले में व्युत्क्रम QFT को लागू करना हैडमार्ड गेट लगाने के समान है। अंतिम परिणाम की संभावनाएँ इस प्रकार हैं कहाँ , या अधिक स्पष्ट रूप से,
यह स्पष्ट है कि इस सरल उदाहरण में, यदि , तब और इस प्रकार हम माप परिणाम से सटीक आइगेनवैल्यू को निश्चित रूप से पुनर्प्राप्त करते हैं।
यदि दूसरी ओर , तब , वह है, और . यह हमारी सामान्य चर्चा के अनुकूल है क्योंकि .
↑Kitaev, A. Yu (1995-11-20). "क्वांटम माप और एबेलियन स्टेबलाइज़र समस्या". arXiv:quant-ph/9511026.
↑ 2.02.1Nielsen, Michael A. & Isaac L. Chuang (2001). क्वांटम गणना और क्वांटम जानकारी (Repr. ed.). Cambridge [u.a.]: Cambridge Univ. Press. ISBN978-0521635035.
↑Benenti, Guiliano; Casati, Giulio; Strini, Giuliano (2004). क्वांटम गणना और सूचना के सिद्धांत (Reprinted. ed.). New Jersey [u.a.]: World Scientific. ISBN978-9812388582.