क्यू-फलन: Difference between revisions
No edit summary |
No edit summary |
||
Line 19: | Line 19: | ||
:<math>Q(x) = 1 - Q(-x) = 1 - \Phi(x)\,\!,</math> | :<math>Q(x) = 1 - Q(-x) = 1 - \Phi(x)\,\!,</math> | ||
जहाँ <math>\Phi(x)</math> मानक सामान्य गाऊसी वितरण का संचयी वितरण फ़ंक्शन है। | |||
क्यू-फ़ंक्शन को त्रुटि फ़ंक्शन या पूरक त्रुटि फ़ंक्शन के रूप में व्यक्त किया जा सकता है<ref name="jo"/> | क्यू-फ़ंक्शन को त्रुटि फ़ंक्शन या पूरक त्रुटि फ़ंक्शन के रूप में व्यक्त किया जा सकता है<ref name="jo"/> | ||
Line 34: | Line 34: | ||
यह अभिव्यक्ति केवल x के सकारात्मक मानों के लिए मान्य है, लेकिन इसका उपयोग नकारात्मक मानों के लिए Q(x) प्राप्त करने के लिए Q(x) = 1 − Q(−x) के संयोजन में किया जा सकता है। यह रूप लाभप्रद है क्योंकि एकीकरण की सीमा निश्चित और सीमित है। | यह अभिव्यक्ति केवल x के सकारात्मक मानों के लिए मान्य है, लेकिन इसका उपयोग नकारात्मक मानों के लिए Q(x) प्राप्त करने के लिए Q(x) = 1 − Q(−x) के संयोजन में किया जा सकता है। यह रूप लाभप्रद है क्योंकि एकीकरण की सीमा निश्चित और सीमित है। | ||
क्रेग के फॉर्मूले को बाद में बेहनाद (2020) द्वारा | क्रेग के फॉर्मूले को बाद में बेहनाद (2020) द्वारा <ref>{{cite journal |doi=10.1109/TCOMM.2020.2986209 |title=क्रेग के क्यू-फंक्शन फॉर्मूला का एक नया विस्तार और दोहरे-शाखा ईजीसी प्रदर्शन विश्लेषण में इसका अनुप्रयोग|journal=IEEE Transactions on Communications |volume=68|issue=7|pages=4117–4125|year=2020|last1=Behnad|first1=Aydin|s2cid=216500014}}</ref> दो गैर-नकारात्मक चर के योग के क्यू-फ़ंक्शन के लिए इस प्रकार बढ़ाया गया: | ||
:[[File:Q function complex plot plotted with Mathematica 13.1 ComplexPlot3D.svg|alt=the Q-function plotted in the complex plane|thumb|the Q-function plotted in the complex plane]]<math>Q(x+y) = \frac{1}{\pi} \int_0^{\frac{\pi}{2}} \exp \left( - \frac{x^2}{2 \sin^2 \theta} - \frac{y^2}{2 \cos^2 \theta} \right) d\theta, \quad x,y \geqslant 0 .</math> | :[[File:Q function complex plot plotted with Mathematica 13.1 ComplexPlot3D.svg|alt=the Q-function plotted in the complex plane|thumb|the Q-function plotted in the complex plane]]<math>Q(x+y) = \frac{1}{\pi} \int_0^{\frac{\pi}{2}} \exp \left( - \frac{x^2}{2 \sin^2 \theta} - \frac{y^2}{2 \cos^2 \theta} \right) d\theta, \quad x,y \geqslant 0 .</math> |
Revision as of 10:03, 14 July 2023
आंकड़ों में, Q-फ़ंक्शन मानक सामान्य वितरण का संचयी वितरण फ़ंक्शन (टेल डिस्ट्रीब्यूशन फ़ंक्शन) है।[1][2] दूसरे शब्दों में संभावना है कि एक सामान्य (गाऊसी) यादृच्छिक चर x मानक विचलन से बड़ा मान प्राप्त करेगा। समान रूप से यह संभावना है कि एक मानक सामान्य यादृच्छिक चर से बड़ा मान लेता है।
अगर माध्य के साथ एक गाऊसी यादृच्छिक चर हैं और विचरण , तो मानक सामान्य वितरण हैं और
जहाँ
क्यू-फ़ंक्शन की अन्य परिभाषाएँ, जो सभी सामान्य संचयी वितरण फ़ंक्शन के सरल परिवर्तन का भी कभी-कभी उपयोग किया जाता है।[3]
सामान्य वितरण के संचयी वितरण फ़ंक्शन से इसके संबंध के कारण, क्यू-फ़ंक्शन को त्रुटि फ़ंक्शन के संदर्भ में भी व्यक्त किया जा सकता है, जो लागू गणित और भौतिकी में एक महत्वपूर्ण फ़ंक्शन है।
परिभाषा और बुनियादी गुण
औपचारिक रूप से, Q-फ़ंक्शन को इस प्रकार परिभाषित किया गया है
इस प्रकार,
जहाँ मानक सामान्य गाऊसी वितरण का संचयी वितरण फ़ंक्शन है।
क्यू-फ़ंक्शन को त्रुटि फ़ंक्शन या पूरक त्रुटि फ़ंक्शन के रूप में व्यक्त किया जा सकता है[2]
क्यू-फ़ंक्शन का एक वैकल्पिक रूप जिसे इसके खोजकर्ता के नाम पर क्रेग के सूत्र के रूप में जाना जाता है, इस प्रकार व्यक्त किया गया है:[4]
यह अभिव्यक्ति केवल x के सकारात्मक मानों के लिए मान्य है, लेकिन इसका उपयोग नकारात्मक मानों के लिए Q(x) प्राप्त करने के लिए Q(x) = 1 − Q(−x) के संयोजन में किया जा सकता है। यह रूप लाभप्रद है क्योंकि एकीकरण की सीमा निश्चित और सीमित है।
क्रेग के फॉर्मूले को बाद में बेहनाद (2020) द्वारा [5] दो गैर-नकारात्मक चर के योग के क्यू-फ़ंक्शन के लिए इस प्रकार बढ़ाया गया:
:
सीमाएँ और सन्निकटन
- क्यू-फ़ंक्शन कोई प्राथमिक फ़ंक्शन नहीं है। हालाँकि, बोरजेसन-सुंदरबर्ग सीमा जहाँ मानक सामान्य वितरण का घनत्व फलन है,[6]
- बड़े एक्स के लिए तेजी से तंग हो जाते हैं और अक्सर उपयोगी होते हैं।
- प्रतिस्थापन द्वारा एकीकरण का उपयोग करना v =u2/2, ऊपरी सीमा इस प्रकार निकाली गई है:
- इसी प्रकार, उपयोग करना और भागफल नियम
- Q(x) को हल करने से निचली सीमा मिलती है।
- ऊपरी और निचली सीमा का ज्यामितीय माध्य इसके लिए उपयुक्त अनुमान देता है :
- की सख्त सीमाएँ और सन्निकटन निम्नलिखित अभिव्यक्ति को अनुकूलित करके भी प्राप्त किया जा सकता है [6]
- के लिए , सर्वोत्तम ऊपरी सीमा किसके द्वारा दी गई है और 0.44% की अधिकतम पूर्ण सापेक्ष त्रुटि के साथ। इसी प्रकार, सर्वोत्तम सन्निकटन द्वारा दिया गया है और 0.27% की अधिकतम पूर्ण सापेक्ष त्रुटि के साथ। अंत में, सबसे अच्छी निचली सीमा दी गई है और 1.17% की अधिकतम पूर्ण सापेक्ष त्रुटि के साथ।
- क्यू-फ़ंक्शन का चेर्नॉफ़ बाध्य है
- बेहतर घातीय सीमाएँ और एक शुद्ध घातीय सन्निकटन हैं [7]
- उपरोक्त को तनाश और रिइहोनेन (2020) द्वारा सामान्यीकृत किया गया था,[8] वो किसने दिखाया सटीक रूप से अनुमान लगाया जा सकता है या सीमाबद्ध किया जा सकता है
- विशेष रूप से, उन्होंने संख्यात्मक गुणांकों को हल करने के लिए एक व्यवस्थित पद्धति प्रस्तुत की जो एक न्यूनतम सन्निकटन एल्गोरिथ्म सन्निकटन या बाध्य उत्पन्न करता है: , या के लिए . पेपर में सारणीबद्ध उदाहरण गुणांकों के साथ सापेक्ष और निरपेक्ष सन्निकटन त्रुटियाँ कम हैं और क्रमश। गुणांक घातीय सन्निकटन और सीमा तक के कई रूपों के लिए एक व्यापक डेटासेट के रूप में विवृत अभिगम के लिए जारी किया गया है।[9]
- का एक और अनुमान के लिए करागियानिडिस और लिउबास द्वारा दिया गया है (2007)[10] जिन्होंने मापदंडों के उचित चयन के लिए प्रदर्शन किया वह
- के बीच पूर्ण त्रुटि और सीमा के ऊपर मूल्यांकन करके न्यूनतम किया जाता है
- प्रयोग करना और संख्यात्मक रूप से एकीकृत करने पर उन्होंने पाया कि न्यूनतम त्रुटि कब हुई जिसने इसके लिए एक अच्छा अनुमान दिया
- इन मूल्यों को प्रतिस्थापित करना और इनके बीच संबंध का उपयोग करना और ऊपर से देता है
- किसी विशिष्ट अनुप्रयोग के लिए सटीकता को तैयार करने या इसे एक तंग सीमा में बदलने के लिए उपरोक्त 'कारागियानिडिस-लिओमपास सन्निकटन' के लिए वैकल्पिक गुणांक भी उपलब्ध हैं।[11]
- एक सख्त और अधिक सुव्यवस्थित सन्निकटन सकारात्मक तर्कों के लिए लोपेज़-बेनिटेज़ और कैसादेवल द्वारा दिया गया है (2011)[12] दूसरे क्रम के घातीय फ़ंक्शन के आधार पर:
- फिटिंग गुणांक वर्ग त्रुटियों के योग को कम करने के लिए तर्कों की किसी भी वांछित सीमा पर अनुकूलित किया जा सकता है (, , के लिए ) या अधिकतम निरपेक्ष त्रुटि को कम करें (, , के लिए ). यह सन्निकटन कुछ लाभ प्रदान करता है जैसे सटीकता और विश्लेषणात्मक ट्रैक्टेबिलिटी के बीच एक अच्छा व्यापार-बंद (उदाहरण के लिए, किसी भी मनमानी शक्ति का विस्तार) तुच्छ है और सन्निकटन के बीजगणितीय रूप में परिवर्तन नहीं करता है)।
उलटा Q
व्युत्क्रम Q-फ़ंक्शन त्रुटि फ़ंक्शन#व्युत्क्रम फ़ंक्शंस से संबंधित हो सकता है:
फ़ंक्शन डिजिटल संचार में अनुप्रयोग पाता है। इसे सामान्यतौर पर डेसीबल फ़ील्ड मात्राओं और रूट-पावर मात्राओं में व्यक्त किया जाता है और सामान्यतौर पर इसे क्यू-फैक्टर कहा जाता है:
जहां y विश्लेषण के तहत डिजिटल रूप से संशोधित सिग्नल की बिट-त्रुटि दर (बीईआर) है। उदाहरण के लिए, एडिटिव व्हाइट गॉसियन शोर में चरण-शिफ्ट कुंजीयन क्वाड्रेचर चरण-शिफ्ट कुंजीयन (क्यूपीएसके) के लिए, ऊपर परिभाषित क्यू-कारक सिग्नल-टू-शोर अनुपात#डेसिबल के डीबी में मान के साथ मेल खाता है जो थोड़ी त्रुटि उत्पन्न करता है दर y के बराबर.
मान
क्यू-फ़ंक्शन अच्छी तरह से सारणीबद्ध है और इसे अधिकांश गणितीय सॉफ़्टवेयर पैकेजों जैसे कि आर (प्रोग्रामिंग भाषा) और पायथन (प्रोग्रामिंग भाषा), मैटलैब और वोल्फ्राम मैथमैटिका में उपलब्ध लोगों में सीधे गणना की जा सकती है। क्यू-फ़ंक्शन के कुछ मान संदर्भ के लिए नीचे दिए गए हैं।
|
|
|
|
उच्च आयामों का सामान्यीकरण
Q-फ़ंक्शन को उच्च आयामों के लिए सामान्यीकृत किया जा सकता है:[13]
जहाँ सहप्रसरण के साथ बहुभिन्नरूपी सामान्य वितरण का अनुसरण करता है और दहलीज रूप की है कुछ सकारात्मक सदिश के लिए और सकारात्मक स्थिरांक . जैसा कि एक आयामी स्थिति में क्यू-फ़ंक्शन के लिए कोई सरल विश्लेषणात्मक सूत्र नहीं है। फिर भी Q-फ़ंक्शन को मनमाने ढंग से अनुमानित किया जा सकता है बड़ा और बड़ा होता जाता है।[14][15]
संदर्भ
- ↑ The Q-function, from cnx.org
- ↑ 2.0 2.1 Basic properties of the Q-function Archived March 25, 2009, at the Wayback Machine
- ↑ Normal Distribution Function – from Wolfram MathWorld
- ↑ Craig, J.W. (1991). "A new, simple and exact result for calculating the probability of error for two-dimensional signal constellations" (PDF). MILCOM 91 - Conference record. pp. 571–575. doi:10.1109/MILCOM.1991.258319. ISBN 0-87942-691-8. S2CID 16034807.
- ↑ Behnad, Aydin (2020). "क्रेग के क्यू-फंक्शन फॉर्मूला का एक नया विस्तार और दोहरे-शाखा ईजीसी प्रदर्शन विश्लेषण में इसका अनुप्रयोग". IEEE Transactions on Communications. 68 (7): 4117–4125. doi:10.1109/TCOMM.2020.2986209. S2CID 216500014.
- ↑ 6.0 6.1 Borjesson, P.; Sundberg, C.-E. (1979). "संचार अनुप्रयोगों के लिए त्रुटि फ़ंक्शन Q(x) का सरल अनुमान". IEEE Transactions on Communications. 27 (3): 639–643. doi:10.1109/TCOM.1979.1094433.
- ↑ Chiani, M.; Dardari, D.; Simon, M.K. (2003). "फ़ेडिंग चैनलों में त्रुटि संभावना की गणना के लिए नई घातीय सीमाएँ और सन्निकटन" (PDF). IEEE Transactions on Wireless Communications. 24 (5): 840–845. doi:10.1109/TWC.2003.814350.
- ↑ Tanash, I.M.; Riihonen, T. (2020). "घातांक के योग द्वारा गॉसियन क्यू-फ़ंक्शन के लिए वैश्विक न्यूनतम अनुमान और सीमाएँ". IEEE Transactions on Communications. 68 (10): 6514–6524. arXiv:2007.06939. doi:10.1109/TCOMM.2020.3006902. S2CID 220514754.
- ↑ Tanash, I.M.; Riihonen, T. (2020). "Coefficients for Global Minimax Approximations and Bounds for the Gaussian Q-Function by Sums of Exponentials [Data set]". Zenodo. doi:10.5281/zenodo.4112978.
- ↑ Karagiannidis, George; Lioumpas, Athanasios (2007). "गॉसियन क्यू-फ़ंक्शन के लिए एक बेहतर अनुमान" (PDF). IEEE Communications Letters. 11 (8): 644–646. doi:10.1109/LCOMM.2007.070470. S2CID 4043576.
- ↑ Tanash, I.M.; Riihonen, T. (2021). "Improved coefficients for the Karagiannidis–Lioumpas approximations and bounds to the Gaussian Q-function". IEEE Communications Letters. 25 (5): 1468–1471. arXiv:2101.07631. doi:10.1109/LCOMM.2021.3052257. S2CID 231639206.
- ↑ Lopez-Benitez, Miguel; Casadevall, Fernando (2011). "गॉसियन क्यू-फ़ंक्शन के लिए बहुमुखी, सटीक और विश्लेषणात्मक रूप से ट्रैक्टेबल अनुमान" (PDF). IEEE Transactions on Communications. 59 (4): 917–922. doi:10.1109/TCOMM.2011.012711.100105. S2CID 1145101.
- ↑ Savage, I. R. (1962). "बहुभिन्नरूपी सामान्य वितरण के लिए मिल अनुपात". Journal of Research of the National Bureau of Standards Section B. 66 (3): 93–96. doi:10.6028/jres.066B.011. Zbl 0105.12601.
- ↑ Botev, Z. I. (2016). "The normal law under linear restrictions: simulation and estimation via minimax tilting". Journal of the Royal Statistical Society, Series B. 79: 125–148. arXiv:1603.04166. Bibcode:2016arXiv160304166B. doi:10.1111/rssb.12162. S2CID 88515228.
- ↑ Botev, Z. I.; Mackinlay, D.; Chen, Y.-L. (2017). "Logarithmically efficient estimation of the tail of the multivariate normal distribution". 2017 Winter Simulation Conference (WSC). IEEE. pp. 1903–191. doi:10.1109/WSC.2017.8247926. ISBN 978-1-5386-3428-8. S2CID 4626481.