नो-टेलीपोर्टेशन प्रमेय: Difference between revisions
(Created page with "{{Short description|Theorem stating the impossibility of converting qubits into bits}} क्वांटम सूचना सिद्धांत में, नो-ट...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Theorem stating the impossibility of converting qubits into bits}} | {{Short description|Theorem stating the impossibility of converting qubits into bits}} | ||
[[क्वांटम सूचना सिद्धांत]] में, नो-टेलीपोर्टेशन प्रमेय बताता है कि एक | [[क्वांटम सूचना सिद्धांत|परिमाण सूचना सिद्धांत]] में, नो-टेलीपोर्टेशन प्रमेय बताता है कि एक यथेच्छाचार परिमाण स्थिति को [[ अंश | बिट्स(अंश)]] के अनुक्रम (या ऐसे बिट्स की अनंत संख्या) में परिवर्तित नहीं किया जा सकता है न ही ऐसे बिट्स का उपयोग मूल स्थिति के पुनर्निर्माण के लिए किया जा सकता है, इस प्रकार केवल उत्कृष्ट बिट्स को चारों ओर घुमाकर इसे टेलीपोर्ट किया जा सकता है। दूसरे शब्दों में कहें तो, यह बताता है कि परिमाण सूचना की इकाई, [[qubit|क्यूबिट]], को सटीक रूप से उत्कृष्ट सूचना बिट्स में परिवर्तित नहीं किया जा सकता है। इसे [[क्वांटम टेलीपोर्टेशन|परिमाण टेलीपोर्टेशन]] के साथ भ्रमित नहीं किया जाना चाहिए, जो एक परिमाण स्थिति को एक स्थान पर नष्ट करने और एक अलग स्थान पर एक सटीक प्रतिकृति बनाने की अनुमति देता है। | ||
अपरिष्कृत शब्दों में, नो-टेलीपोर्टेशन प्रमेय [[हाइजेनबर्ग अनिश्चितता सिद्धांत]] और [[ईपीआर विरोधाभास]] से उत्पन्न होता है: | अपरिष्कृत शब्दों में, नो-टेलीपोर्टेशन प्रमेय [[हाइजेनबर्ग अनिश्चितता सिद्धांत]] और [[ईपीआर विरोधाभास]] से उत्पन्न होता है: यद्यपि एक क्यूबिट <math>|\psi\rangle</math> [[बलोच क्षेत्र]] पर एक विशिष्ट दिशा की कल्पना की जा सकती है, वह दिशा सामान्य स्थिति <math>|\psi\rangle</math> के लिए सटीक रूप से [[क्वांटम माप|परिमाण माप]] नहीं हो सकती है, यदि ऐसा हो सकता है, तो उस माप के परिणामों को शब्दों, यानी उत्कृष्ट जानकारी के साथ वर्णित किया जा सकेगा। | ||
नो-टेलीपोर्टेशन प्रमेय [[नो-क्लोनिंग प्रमेय]] द्वारा निहित है: यदि एक | नो-टेलीपोर्टेशन प्रमेय [[नो-क्लोनिंग प्रमेय]] द्वारा निहित है: यदि एक क्यूबिट को उत्कृष्ट बिट्स में परिवर्तित करना संभव होता, तो एक क्यूबिट को प्रतिलिपि करना आसान होता (क्योंकि उत्कृष्ट बिट्स अल्प रूप से प्रतिलिपि करने योग्य होते हैं)। | ||
==निरूपण== | ==निरूपण== | ||
परिमाण सूचना शब्द का तात्पर्य परिमाण प्रणाली की स्थिति में संग्रहीत जानकारी से है।दो परिमाण अवस्थाएँ ρ1 और ρ2 समान हैं यदि किसी भौतिक अवलोकन के माप परिणाम में ρ1 और ρ2 के लिए समान अपेक्षित मान हैं। इस प्रकार माप को परिमाण निविष्ट और उत्कृष्ट उत्पाद के साथ एक सूचना प्रणाली के रूप में देखा जा सकता है, अर्थात, परिमाण प्रणाली पर माप करने से परिमाण जानकारी उत्कृष्ट जानकारी में बदल जाती है। दूसरी ओर, परिमाण स्थिति तैयार करने से उत्कृष्ट जानकारी को परिमाण जानकारी में ले जाया जाता है। | |||
सामान्य तौर पर, एक | सामान्य तौर पर, एक परिमाण अवस्था का वर्णन [[घनत्व मैट्रिक्स]] द्वारा किया जाता है। मान लीजिए कि किसी के पास कुछ मिश्रित अवस्था ρ में एक परिमाण प्रणाली है। उसी प्रणाली का एक समूह इस प्रकार तैयार करें: | ||
#ρ पर माप निष्पादित करें. | #ρ पर माप निष्पादित करें. | ||
#माप परिणाम के अनुसार किसी पूर्व-निर्दिष्ट अवस्था में एक प्रणाली तैयार करें। | #माप परिणाम के अनुसार किसी पूर्व-निर्दिष्ट अवस्था में एक प्रणाली तैयार करें। | ||
नो-टेलीपोर्टेशन प्रमेय बताता है कि परिणाम ρ से भिन्न होगा, भले ही तैयारी प्रक्रिया माप परिणाम से कैसे संबंधित हो। एक | नो-टेलीपोर्टेशन प्रमेय बताता है कि परिणाम ρ से भिन्न होगा, भले ही तैयारी प्रक्रिया माप परिणाम से कैसे संबंधित हो। एक परिमाण अवस्था को एक माप के माध्यम से निर्धारित नहीं किया जा सकता है। दूसरे शब्दों में, यदि परिमाण प्रणालीमाप के बाद तैयारी की जाती है, तो यह पहचान प्रणालीनहीं हो सकता है। एक बार उत्कृष्ट जानकारी में परिवर्तित होने के बाद, परिमाण जानकारी पुनर्प्राप्त नहीं की जा सकती। | ||
इसके विपरीत, यदि कोई | इसके विपरीत, यदि कोई उत्कृष्ट जानकारी को परिमाण जानकारी में और फिर वापस उत्कृष्ट जानकारी में परिवर्तित करना चाहता है तो सही प्रसारण संभव है। उत्कृष्ट बिट्स के लिए, यह उन्हें ऑर्थोगोनल परिमाण राज्यों में एन्कोड करके किया जा सकता है, जिसे हमेशा अलग किया जा सकता है। | ||
==यह भी देखें== | ==यह भी देखें== | ||
परिमाण सूचना में अन्य [[नो-गो प्रमेय]] हैं: | |||
*असंचार प्रमेय. उलझी हुई अवस्थाओं का उपयोग | *असंचार प्रमेय. उलझी हुई अवस्थाओं का उपयोग उत्कृष्ट जानकारी प्रसारित करने के लिए नहीं किया जा सकता है। | ||
*नो-क्लोनिंग प्रमेय. | *नो-क्लोनिंग प्रमेय. परिमाण अवस्थाओं की प्रतिलिपि नहीं बनाई जा सकती. | ||
*[[नो-ब्रॉडकास्ट प्रमेय]]. मिश्रित अवस्था (भौतिकी) के | *[[नो-ब्रॉडकास्ट प्रमेय]]. मिश्रित अवस्था (भौतिकी) के स्थिति में नो क्लोनिंग प्रमेय का सामान्यीकरण। | ||
*[[नो-डिलीटिंग प्रमेय]]. नो-क्लोनिंग प्रमेय का दोहरा परिणाम: प्रतियां हटाई नहीं जा सकतीं। | *[[नो-डिलीटिंग प्रमेय]]. नो-क्लोनिंग प्रमेय का दोहरा परिणाम: प्रतियां हटाई नहीं जा सकतीं। | ||
परिमाण उलझाव की सहायता से, परिमाण अवस्थाओं को टेलीपोर्ट किया जा सकता है, देखें | |||
* | *परिमाण टेलीपोर्टेशन | ||
== संदर्भ== | == संदर्भ== |
Revision as of 23:31, 15 July 2023
परिमाण सूचना सिद्धांत में, नो-टेलीपोर्टेशन प्रमेय बताता है कि एक यथेच्छाचार परिमाण स्थिति को बिट्स(अंश) के अनुक्रम (या ऐसे बिट्स की अनंत संख्या) में परिवर्तित नहीं किया जा सकता है न ही ऐसे बिट्स का उपयोग मूल स्थिति के पुनर्निर्माण के लिए किया जा सकता है, इस प्रकार केवल उत्कृष्ट बिट्स को चारों ओर घुमाकर इसे टेलीपोर्ट किया जा सकता है। दूसरे शब्दों में कहें तो, यह बताता है कि परिमाण सूचना की इकाई, क्यूबिट, को सटीक रूप से उत्कृष्ट सूचना बिट्स में परिवर्तित नहीं किया जा सकता है। इसे परिमाण टेलीपोर्टेशन के साथ भ्रमित नहीं किया जाना चाहिए, जो एक परिमाण स्थिति को एक स्थान पर नष्ट करने और एक अलग स्थान पर एक सटीक प्रतिकृति बनाने की अनुमति देता है।
अपरिष्कृत शब्दों में, नो-टेलीपोर्टेशन प्रमेय हाइजेनबर्ग अनिश्चितता सिद्धांत और ईपीआर विरोधाभास से उत्पन्न होता है: यद्यपि एक क्यूबिट बलोच क्षेत्र पर एक विशिष्ट दिशा की कल्पना की जा सकती है, वह दिशा सामान्य स्थिति के लिए सटीक रूप से परिमाण माप नहीं हो सकती है, यदि ऐसा हो सकता है, तो उस माप के परिणामों को शब्दों, यानी उत्कृष्ट जानकारी के साथ वर्णित किया जा सकेगा।
नो-टेलीपोर्टेशन प्रमेय नो-क्लोनिंग प्रमेय द्वारा निहित है: यदि एक क्यूबिट को उत्कृष्ट बिट्स में परिवर्तित करना संभव होता, तो एक क्यूबिट को प्रतिलिपि करना आसान होता (क्योंकि उत्कृष्ट बिट्स अल्प रूप से प्रतिलिपि करने योग्य होते हैं)।
निरूपण
परिमाण सूचना शब्द का तात्पर्य परिमाण प्रणाली की स्थिति में संग्रहीत जानकारी से है।दो परिमाण अवस्थाएँ ρ1 और ρ2 समान हैं यदि किसी भौतिक अवलोकन के माप परिणाम में ρ1 और ρ2 के लिए समान अपेक्षित मान हैं। इस प्रकार माप को परिमाण निविष्ट और उत्कृष्ट उत्पाद के साथ एक सूचना प्रणाली के रूप में देखा जा सकता है, अर्थात, परिमाण प्रणाली पर माप करने से परिमाण जानकारी उत्कृष्ट जानकारी में बदल जाती है। दूसरी ओर, परिमाण स्थिति तैयार करने से उत्कृष्ट जानकारी को परिमाण जानकारी में ले जाया जाता है।
सामान्य तौर पर, एक परिमाण अवस्था का वर्णन घनत्व मैट्रिक्स द्वारा किया जाता है। मान लीजिए कि किसी के पास कुछ मिश्रित अवस्था ρ में एक परिमाण प्रणाली है। उसी प्रणाली का एक समूह इस प्रकार तैयार करें:
- ρ पर माप निष्पादित करें.
- माप परिणाम के अनुसार किसी पूर्व-निर्दिष्ट अवस्था में एक प्रणाली तैयार करें।
नो-टेलीपोर्टेशन प्रमेय बताता है कि परिणाम ρ से भिन्न होगा, भले ही तैयारी प्रक्रिया माप परिणाम से कैसे संबंधित हो। एक परिमाण अवस्था को एक माप के माध्यम से निर्धारित नहीं किया जा सकता है। दूसरे शब्दों में, यदि परिमाण प्रणालीमाप के बाद तैयारी की जाती है, तो यह पहचान प्रणालीनहीं हो सकता है। एक बार उत्कृष्ट जानकारी में परिवर्तित होने के बाद, परिमाण जानकारी पुनर्प्राप्त नहीं की जा सकती।
इसके विपरीत, यदि कोई उत्कृष्ट जानकारी को परिमाण जानकारी में और फिर वापस उत्कृष्ट जानकारी में परिवर्तित करना चाहता है तो सही प्रसारण संभव है। उत्कृष्ट बिट्स के लिए, यह उन्हें ऑर्थोगोनल परिमाण राज्यों में एन्कोड करके किया जा सकता है, जिसे हमेशा अलग किया जा सकता है।
यह भी देखें
परिमाण सूचना में अन्य नो-गो प्रमेय हैं:
- असंचार प्रमेय. उलझी हुई अवस्थाओं का उपयोग उत्कृष्ट जानकारी प्रसारित करने के लिए नहीं किया जा सकता है।
- नो-क्लोनिंग प्रमेय. परिमाण अवस्थाओं की प्रतिलिपि नहीं बनाई जा सकती.
- नो-ब्रॉडकास्ट प्रमेय. मिश्रित अवस्था (भौतिकी) के स्थिति में नो क्लोनिंग प्रमेय का सामान्यीकरण।
- नो-डिलीटिंग प्रमेय. नो-क्लोनिंग प्रमेय का दोहरा परिणाम: प्रतियां हटाई नहीं जा सकतीं।
परिमाण उलझाव की सहायता से, परिमाण अवस्थाओं को टेलीपोर्ट किया जा सकता है, देखें
- परिमाण टेलीपोर्टेशन
संदर्भ
- Jozef Gruska, Iroshi Imai, "Power, Puzzles and Properties of Entanglement" (2001) pp 25–68, appearing in Machines, Computations, and Universality: Third International Conference. edited by Maurice Margenstern, Yurii Rogozhin. (see p 41)
- Anirban Pathak, Elements of Quantum Computation and Quantum Communication (2013) CRC Press. (see p. 128)