ऑर्डर लॉगिट: Difference between revisions

From Vigyanwiki
Line 60: Line 60:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 07/07/2023]]
[[Category:Created On 07/07/2023]]
[[Category:Vigyan Ready]]

Revision as of 11:20, 20 July 2023

सांख्यिकी में, ऑर्डर लॉगिट मॉडल (ऑर्डर लॉजिस्टिक रिग्रेशन या आनुपातिक ऑड्स मॉडल) एक क्रमसूचक प्रतिगमन मॉडल है - यानी, माप के स्तर ऑर्डिनल प्रकार के आश्रित चर के लिए एक रिग्रेशन विश्लेषण मॉडल है- जिसे पहले पीटर मैक्कुलघ ने माना था।[1] उदाहरण के लिए, यदि किसी सर्वेक्षण में एक प्रश्न का उत्तर लिकर्ट मापन द्वारा दिया जाना है कि ''गरीब'', ''निष्पक्ष'', ''अच्छा'', ''बहुत अच्छा'' और ''उत्कृष्ट'' के बीच चयन, और विश्लेषण का उद्देश्य यह देखना है कि प्रतिक्रियाओं द्वारा उस प्रतिक्रिया की कितनी अच्छी भविष्यवाणी की जा सकती है अन्य प्रश्नों के लिए, जिनमें से कुछ मात्रात्मक हो सकते हैं, तो आदेशित संभार तन्त्र परावर्तन का उपयोग किया जा सकता है। इसे लॉजिस्टिक रिग्रेशन मॉडल के विस्तार के रूप में सोचा जा सकता है जो द्विभाजित आश्रित चर पर लागू होता है, जो दो से अधिक (आदेशित) प्रतिक्रिया श्रेणियों की अनुमति देता है।

मॉडल और आनुपातिक बाधाओं की धारणा

मॉडल केवल उस डेटा पर लागू होता है जो आनुपातिक बाधाओं की धारणा को पूरा करता है, जिसका अर्थ निम्नानुसार उदाहरण दिया जा सकता है। मान लीजिए कि पाँच परिणाम हैं: ''ख़राब'', ''निष्पक्ष'', ''अच्छा'', ''बहुत अच्छा'' और ''उत्कृष्ट''। हम मानते हैं कि इन परिणामों की संभावनाएँ द्वारा दी गई हैं p1(x), p2(x), p3(x), p4(x), p5(x), ये सभी कुछ स्वतंत्र चर x के फलन हैं। फिर, x के एक निश्चित मान के लिए, कुछ निश्चित तरीकों से उत्तर देने की संभावनाओं के लघुगणक (संभावनाओं के लघुगणक नहीं) हैं:

आनुपातिक बाधाओं की धारणा बताती है कि इनमें से प्रत्येक लघुगणक में अगला प्राप्त करने के लिए जोड़ी गई संख्याएँ x की परवाह किए बिना समान हैं। दूसरे शब्दों में, खराब या ठीक स्वास्थ्य होने की संभावना के लघुगणक में से खराब स्वास्थ्य होने का लघुगणक घटाने के बीच का अंतर x की परवाह किए बिना समान है; इसी तरह, खराब, निष्पक्ष, या अच्छे स्वास्थ्य होने की संभावना का लघुगणक माइनस खराब या उचित स्वास्थ्य होने का लघुगणक x की परवाह किए बिना समान है; वगैरह।[2]

बहु-आदेशित प्रतिक्रिया श्रेणियों के उदाहरणों में बांड रेटिंग, दृढ़ता से सहमत से लेकर दृढ़ता से असहमत तक की प्रतिक्रियाओं के साथ राय सर्वेक्षण, सरकारी कार्यक्रमों पर राज्य के खर्च का स्तर (उच्च, मध्यम या निम्न), चुने गए बीमा कवरेज का स्तर (कोई नहीं, आंशिक) सम्मिलित हैं। या पूर्ण), और रोज़गार की स्थिति (रोज़गार नहीं, अंशकालिक नियोजित, या पूरी तरह से नियोजित)।[3]

ऑर्डर किए गए लॉगिट को एक अव्यक्त-चर मॉडल से प्राप्त किया जा सकता है, उसी के समान जिससे लॉजिस्टिक रिग्रेशन#एक अव्यक्त-चर मॉडल को प्राप्त किया जा सकता है। मान लीजिए कि अंतर्निहित प्रक्रिया की विशेषता है

जहाँ एक अवलोकित आश्रित चर है (शायद सर्वेक्षणकर्ता द्वारा प्रस्तावित कथन के साथ समझौते का सटीक स्तर); स्वतंत्र चरों का सदिश है; त्रुटियाँ और अवशेष हैं, जो एक मानक लॉजिस्टिक वितरण का पालन करने के लिए माने गए हैं; और प्रतिगमन गुणांक का सदिश है जिसका हम अनुमान लगाना चाहते हैं। इसके अलावा मान लीजिए कि हम निरीक्षण नहीं कर सकते इसके बजाय, हम केवल प्रतिक्रिया की श्रेणियों का निरीक्षण कर सकते हैं

जहां पैरामीटर अवलोकन योग्य श्रेणियों के बाहरी रूप से लगाए गए समापन बिंदु हैं। फिर ऑर्डर की गई लॉगिट तकनीक पैरामीटर सदिश को फिट करने के लिए y पर अवलोकनों का उपयोग करेगी, जो y * पर सेंसरिंग (सांख्यिकी) का एक रूप है .

अनुमान

समीकरण का अनुमान कैसे लगाया जाता है, इसके विवरण के लिए, ऑर्डिनल रिग्रेशन लेख देखें।

यह भी देखें

  • बहुपदीय लॉगिट
  • बहुपदीय प्रोबेट
  • आदेश दिया गया प्रोबेट

संदर्भ

  1. McCullagh, Peter (1980). "सामान्य डेटा के लिए प्रतिगमन मॉडल". Journal of the Royal Statistical Society. Series B (Methodological). 42 (2): 109–142. JSTOR 2984952.
  2. "rologit.pdf" (PDF). Stata.
  3. Greene, William H. (2012). अर्थमितीय विश्लेषण (Seventh ed.). Boston: Pearson Education. pp. 824–827. ISBN 978-0-273-75356-8.

अग्रिम पठन

बाहरी संबंध