लुकास अनुक्रम: Difference between revisions

From Vigyanwiki
No edit summary
Line 360: Line 360:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 07/07/2023]]
[[Category:Created On 07/07/2023]]
[[Category:Vigyan Ready]]

Revision as of 11:29, 20 July 2023

गणित में, लुकास अनुक्रम और कुछ स्थिर-पुनरावर्ती अनुक्रम होता है जो पुनरावृत्ति संबंध को प्रदर्शित करते हैं

जहाँ और निश्चित पूर्णांक होता हैं। इस पुनरावृत्ति संबंध को सरल करने वाले किसी भी अनुक्रम को लुकास अनुक्रमों और के रैखिक संयोजन के रूप में प्रदर्शित किया जा सकता है।

अधिक सामान्यतः, लुकास अनुक्रम और में बहुपद के अनुक्रम का प्रतिनिधित्व और पूर्णांक गुणांक के साथ करते हैं।

लुकास अनुक्रमों के प्रसिद्ध उदाहरणों में फाइबोनैचि संख्याएं, मेरसेन संख्याएं, पेल संख्याएं, लुकास संख्याएं, जैकबस्टल संख्याएं और फर्मेट संख्याओं का श्रेष्ट समुच्चय सम्मिलित होता हैं (नीचे देखें)। इस प्रकार लुकास अनुक्रमों का नाम फ्रांस के गणितज्ञ एडवर्ड लुकास के नाम पर रखा गया था।

पुनरावृत्ति संबंध

दो पूर्णांक पैरामीटर और दिए गएदिए गए है, प्रथम प्रकार के लुकास अनुक्रम और दूसरे प्रकार का पुनरावृत्ति संबंधों द्वारा परिभाषित किया जाता हैं:

और

इसे प्रदर्शित करना कठिन नहीं होता है ,

उपरोक्त संबंधों का आव्युह रूप में इस प्रकार वर्णित किया जा सकता है:




उदाहरण

लुकास अनुक्रमों की प्रारंभिक स्थितियां और तालिका में निम्न प्रकार दिए गए हैं:


स्पष्ट अभिव्यक्ति

लुकास अनुक्रमों के लिए पुनरावृत्ति संबंध का विशिष्ट समीकरण और होता है:

इसमें विभेदक होता और बहुपद का मूल निम्न प्रकार है:

इस प्रकार:

ध्यान दें कि क्रम और क्रम पुनरावृत्ति संबंध को भी सरल करते हैं। यघपि ये पूर्णांक अनुक्रम नहीं हो सकते हैं।

विशिष्ट मूल

जब , a और b भिन्न-भिन्न होता हैं और कोई भी इसे शीघ्रता से सत्यापित कर सकता है

इससे यह पता चलता है कि लुकास अनुक्रमों की स्थितियों को a और b के संदर्भ में निम्नानुसार व्यक्त किया जा सकता है

पुनरावर्तित मूल

स्थिति मात्र तब होता है जब कुछ पूर्णांक S के लिए होता जिससे होता है। इस स्थति में कोई भी इसे सरलता से प्राप्त कर सकते है

गुण

कार्य उत्पन्न करना

सामान्य जनरेटिंग फलन निम्न प्रकार होता हैं

पेल समीकरण

कब , लुकास अनुक्रम और कुछ पेल समीकरण को सरल करें:

विभिन्न मापदंडों के साथ अनुक्रमों के मध्य संबंध

  • किसी भी संख्या c के लिए, अनुक्रम और के साथ
के समान विभेदक और होता है:
  • किसी भी संख्या c के लिए, हमारे पास भी निम्न समीकरण होता है

अन्य संबंध

लुकास अनुक्रमों की स्थिति उन संबंधों को सरल करती हैं जो फाइबोनैचि संख्याओं के मध्य और लुकास संख्याएँ के सामान्यीकरण होता है। उदाहरण के लिए: