बीजगणितीय चक्रों पर मानक अनुमान: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
गणित में, [[बीजगणितीय चक्र|बीजगणितीय | गणित में, [[बीजगणितीय चक्र|बीजगणितीय चक्रों]] के बारे में '''मानक [[अनुमान]]''' बीजगणितीय चक्रों और [[वेइल कोहोमोलॉजी सिद्धांत|वेइल कोहोमोलॉजी सिद्धांतों]] के संबंध का वर्णन करने वाले अनेक अनुमान हैं। इन अनुमानों के मूल अनुप्रयोगों में से एक, [[अलेक्जेंडर ग्रोथेंडिक]] द्वारा परिकल्पित, यह सिद्ध करना करना था कि उनके [[मकसद (बीजगणितीय ज्यामिति)|शुद्ध उद्देश्यों]] के निर्माण ने [[एबेलियन श्रेणी]] दी जो कि [[अर्धसरल श्रेणी]] है। इसके अतिरिक्त, जैसा कि उन्होंने बताया, मानक अनुमान वेइल अनुमान का सबसे कठिन हिस्सा भी दर्शाते हैं, अर्थात् '''"रीमैन परिकल्पना"''' अनुमान जो सत्र 1960 के दशक के अंत में खुला रहा और पश्चात् में पियरे डेलिग्ने द्वारा सिद्ध किया गया; वेइल और मानक अनुमानों के मध्य लिंक पर विवरण के लिए देखें {{harvtxt|क्लेमन|1968}} देखें। मानक अनुमान खुली समस्याएँ बने रहते हैं, जिससे उनका अनुप्रयोग केवल परिणामों का [[सशर्त प्रमाण]] देता है। वेइल अनुमान सहित कुछ स्थितियों में, ऐसे परिणामों को बिना शर्त सिद्ध करना करने के लिए अन्य तरीके पाए गए हैं। | ||
मानक अनुमानों के मौलिक सूत्रीकरण में निश्चित वेइल कोहोमोलॉजी सिद्धांत सम्मिलित होता | मानक अनुमानों के मौलिक सूत्रीकरण में निश्चित वेइल कोहोमोलॉजी सिद्धांत सम्मिलित होता है। सभी अनुमान '''"बीजगणितीय"''' सह-समरूपता वर्गों से संबंधित हैं, जिसका अर्थ है सुचारु [[प्रक्षेप्य किस्म|प्रक्षेप्य]] प्रकार के सह-समरूपता पर रूपवाद | ||
:{{math|''H''<sup> ∗</sup>(''X'') → ''H''<sup> ∗</sup>(''X'')}} | :{{math|''H''<sup> ∗</sup>(''X'') → ''H''<sup> ∗</sup>(''X'')}} | ||
उत्पाद पर तर्कसंगत गुणांकों के साथ बीजगणितीय चक्र द्वारा प्रेरित {{math|''X'' × ''X''}} चक्र वर्ग मानचित्र के माध्यम से, जो वेइल कोहोमोलॉजी सिद्धांत की संरचना का | उत्पाद पर तर्कसंगत गुणांकों के साथ बीजगणितीय चक्र द्वारा प्रेरित {{math|''X'' × ''X''}} चक्र वर्ग मानचित्र के माध्यम से, जो वेइल कोहोमोलॉजी सिद्धांत की संरचना का एक भाग है। | ||
अनुमान ए, अनुमान बी के सामान्तर है (देखें)। {{harvtxt| | अनुमान ए, अनुमान बी के सामान्तर है (देखें)। {{harvtxt|ग्रोथेंडिक|1969}}, पृष्ठ 196), और इसलिए सूचीबद्ध नहीं है। | ||
== लेफ्शेट्ज़ प्रकार मानक अनुमान (अनुमान बी)== | == लेफ्शेट्ज़ प्रकार मानक अनुमान (अनुमान बी)== |
Revision as of 11:23, 24 July 2023
गणित में, बीजगणितीय चक्रों के बारे में मानक अनुमान बीजगणितीय चक्रों और वेइल कोहोमोलॉजी सिद्धांतों के संबंध का वर्णन करने वाले अनेक अनुमान हैं। इन अनुमानों के मूल अनुप्रयोगों में से एक, अलेक्जेंडर ग्रोथेंडिक द्वारा परिकल्पित, यह सिद्ध करना करना था कि उनके शुद्ध उद्देश्यों के निर्माण ने एबेलियन श्रेणी दी जो कि अर्धसरल श्रेणी है। इसके अतिरिक्त, जैसा कि उन्होंने बताया, मानक अनुमान वेइल अनुमान का सबसे कठिन हिस्सा भी दर्शाते हैं, अर्थात् "रीमैन परिकल्पना" अनुमान जो सत्र 1960 के दशक के अंत में खुला रहा और पश्चात् में पियरे डेलिग्ने द्वारा सिद्ध किया गया; वेइल और मानक अनुमानों के मध्य लिंक पर विवरण के लिए देखें क्लेमन (1968) देखें। मानक अनुमान खुली समस्याएँ बने रहते हैं, जिससे उनका अनुप्रयोग केवल परिणामों का सशर्त प्रमाण देता है। वेइल अनुमान सहित कुछ स्थितियों में, ऐसे परिणामों को बिना शर्त सिद्ध करना करने के लिए अन्य तरीके पाए गए हैं।
मानक अनुमानों के मौलिक सूत्रीकरण में निश्चित वेइल कोहोमोलॉजी सिद्धांत सम्मिलित होता है। सभी अनुमान "बीजगणितीय" सह-समरूपता वर्गों से संबंधित हैं, जिसका अर्थ है सुचारु प्रक्षेप्य प्रकार के सह-समरूपता पर रूपवाद
- H ∗(X) → H ∗(X)
उत्पाद पर तर्कसंगत गुणांकों के साथ बीजगणितीय चक्र द्वारा प्रेरित X × X चक्र वर्ग मानचित्र के माध्यम से, जो वेइल कोहोमोलॉजी सिद्धांत की संरचना का एक भाग है।
अनुमान ए, अनुमान बी के सामान्तर है (देखें)। ग्रोथेंडिक (1969), पृष्ठ 196), और इसलिए सूचीबद्ध नहीं है।
लेफ्शेट्ज़ प्रकार मानक अनुमान (अनुमान बी)
वेइल सिद्धांत के सिद्धांतों में से तथाकथित कठिन लेफ्शेट्ज़ प्रमेय (या स्वयंसिद्ध) है:
एक निश्चित चिकने हाइपरप्लेन अनुभाग से शुरुआत करें
- W = H ∩ X,
कहाँ Xपरिवेशीय प्रक्षेप्य स्थान में दी गई सहज प्रक्षेप्य विविधता है P N और H हाइपरप्लेन है. फिर के लिए i ≤ n = dim(X), लेफ्शेट्ज़ ऑपरेटर
- L : H i(X) → H i+2(X),
जिसे कोहोमोलोजी वर्गों के साथ प्रतिच्छेद करके परिभाषित किया गया है W, समरूपता देता है
- Ln−i : H i(X) → H 2n−i(X).
अभी, के लिए i ≤ n परिभाषित करना:
- Λ = (Ln−i+2)−1 ∘ L ∘ (Ln−i) : H i(X) → H i−2(X)
- Λ = (Ln−i) ∘ L ∘ (Ln−i+2)−1 : H 2n−i+2(X) → H 2n−i(X)
अनुमान में कहा गया है कि लेफ्शेट्ज़ ऑपरेटर (Λ) बीजगणितीय चक्र से प्रेरित है।
कुनेथ प्रकार मानक अनुमान (अनुमान सी)
यह अनुमान लगाया गया है कि प्रोजेक्टर
- H ∗(X) ↠ Hi(X) ↣ H ∗(X)
बीजगणितीय हैं, अर्थात चक्र से प्रेरित हैं π i ⊂ X × X तर्कसंगत गुणांक के साथ। इसका तात्पर्य यह है कि किसी भी सहज प्रक्षेप्य विविधता का मकसद (और अधिक सामान्यतः, हर मकसद (बीजगणितीय ज्यामिति)) के रूप में विघटित होता है
मकसद और इसे सदैव सीधे सारांश के रूप में विभाजित किया जा सकता है। इसलिए अनुमान तुरंत वक्रों के लिए मान्य होता है। यह सतहों के लिए सिद्ध करना हुआ था Murre (1990) .
Katz & Messing (1974) ने मनमाने आयाम में, सीमित क्षेत्रों में परिभाषित बीजगणितीय किस्मों के लिए अनुमान दिखाने के लिए वेइल अनुमान का उपयोग किया है।
Šermenev (1974) एबेलियन किस्मों ए के लिए कुनेथ अपघटन सिद्ध करना हुआ।
Deninger & Murre (1991) ने ए के चाउ मकसद के कार्यात्मक कुनेथ अपघटन को प्रदर्शित करके इस परिणाम को परिष्कृत किया, जैसे कि एबेलियन प्रकार पर एन-गुणा कार्य करता है i-वें सारांश पर .
de Cataldo & Migliorini (2002) चिकनी सतह में बिंदुओं की हिल्बर्ट योजना के लिए कुनेथ अपघटन सिद्ध करना हुआ।
अनुमान डी (संख्यात्मक तुल्यता बनाम समरूप तुल्यता)
अनुमान डी बताता है कि संख्यात्मक और समरूप पर्याप्त_समतुल्य_संबंध सहमत हैं। (इसका तात्पर्य यह है कि विशेष रूप से उत्तरार्द्ध वेइल कोहोमोलॉजी सिद्धांत की पसंद पर निर्भर नहीं करता है)। यह अनुमान लेफ्शेट्ज़ अनुमान का तात्पर्य है। यदि हॉज मानक अनुमान मान्य है, तब लेफ्शेट्ज़ अनुमान और अनुमान डी समकक्ष हैं।
यह अनुमान लिबरमैन द्वारा अधिकतम 4 आयाम वाली किस्मों और एबेलियन प्रकार के लिए दिखाया गया था।[1]
हॉज मानक अनुमान
हॉज मानक अनुमान हॉज सूचकांक प्रमेय पर आधारित है। यह आदिम बीजगणितीय सहविज्ञान वर्गों पर कप उत्पाद युग्मन की निश्चितता (धनात्मक या ऋणात्मक, आयाम के अनुसार) बताता है। यदि यह मान्य है, तब लेफ्शेट्ज़ अनुमान अनुमान डी का तात्पर्य है। विशेषता शून्य में हॉज मानक अनुमान हॉज सिद्धांत का परिणाम है। धनात्मक विशेषता में हॉज मानक अनुमान सतहों के लिए जाना जाता है (Grothendieck (1958) ) और आयाम 4 की एबेलियन किस्मों के लिए (Ancona (2020) ).
हॉज मानक अनुमान को हॉज अनुमान के साथ भ्रमित नहीं किया जाना चाहिए जो बताता है कि चिकनी प्रक्षेप्य किस्मों के लिए C, हर तर्कसंगत (p, p)-वर्ग बीजगणितीय है। हॉज अनुमान का तात्पर्य विशेषता शून्य के क्षेत्रों में किस्मों के लिए लेफ्शेट्ज़ और कुनेथ अनुमान और अनुमान डी से है। टेट अनुमान का तात्पर्य सभी क्षेत्रों में लेफ्शेट्ज़, कुनेथ और एटेल कोहोमोलॉजी|ℓ-एडिक कोहोमोलॉजी के लिए अनुमान डी से है।
मानक अनुमानों के स्थायित्व गुण
दो बीजगणितीय किस्मों X और Y के लिए, Arapura (2006) ने शर्त प्रस्तुत की है कि Y, उदाहरण के लिए, यदि कोई विशेषण रूपवाद है तब Y प्रेरित होता है .[2] यदि Y श्रेणी में नहीं पाया जाता है, तब यह उस संदर्भ में अप्रयुक्त है। सुचारु प्रक्षेप्य समष्टि बीजगणितीय किस्मों X और Y के लिए, जैसे कि Y, X की सभी शक्तियाँ[3] इस तथ्य को दिखाने के लिए प्रयुक्त किया जा सकता है, उदाहरण के लिए, बीजगणितीय सतह पर बिंदुओं की हिल्बर्ट योजना के लिए लेफ्शेट्ज़ अनुमान।
अन्य अनुमानों से संबंध
Beilinson (2012) ने दिखाया है कि उद्देश्यों की त्रिकोणीय श्रेणी पर तथाकथित मोटिविक टी-संरचना का (अनुमानात्मक) अस्तित्व लेफ्शेट्ज़ और कुनेथ मानक अनुमान बी और सी का तात्पर्य है।
संदर्भ
- ↑ Lieberman, David I. (1968), "Numerical and homological equivalence of algebraic cycles on Hodge manifolds", Amer. J. Math., 90 (2): 366–374, doi:10.2307/2373533, JSTOR 2373533
- ↑ Arapura (2006, Cor. 1.2)
- ↑ Arapura (2006, Lemma 4.2)
- एंकोना, ग्यूसेप (2020), "एबेलियन फोरफ़ोल्ड्स के लिए मानक अनुमान", आविष्कार करना। गणित।, arXiv:1806.03216, doi:10.1007/s00222-020-00990-7, S2CID 119579196
- अरपुरा, डोनु (2006), "हॉज चक्रों के लिए प्रेरणा", गणित में प्रगति, 207 (2): 762–781, arXiv:math/0501348, doi:10.1016/j.aim.2006.01.005, MR 2271985, S2CID 13897239
{{citation}}
: Invalid|doi-access=मुक्त
(help)
- Beilinson, A. (2012), "ग्रोथेंडिक के मानक अनुमानों पर टिप्पणियाँ", नियामक, समकालीन. गणित।, vol. 571, आमेर. गणित। सोसाइटी, प्रोविडेंस, आरआई, pp. 25–32, arXiv:1006.1116, doi:10.1090/conm/571/11319, ISBN 9780821853221, MR 2953406, S2CID 119687821
- डी कैटाल्डो, मार्क एंड्रिया ए.; मिग्लिओरिनी, लुका (2002), "चाउ समूह और सतह पर बिंदुओं की हिल्बर्ट योजना का मकसद", बीजगणित का जर्नल, 251 (2): 824–848, arXiv:math/0005249, doi:10.1006/jabr.2001.9105, MR 1919155, S2CID 16431761
- Deninger, क्रिस्टोफर; Murre, Jacob (1991), "एबेलियन योजनाओं का मोटिविक अपघटन और फूरियर परिवर्तन", J. Reine Angew. Math., 422: 201–219, MR 1133323
- ग्रोथेंडिक, A. (1969), "बीजगणितीय चक्रों पर मानक अनुमान", बीजगणितीय ज्यामिति (इंटरनेट। कोलोक।, टाटा इंस्टीट्यूट फंड। रेस।, बॉम्बे, 1968) (PDF), ऑक्सफोर्ड यूनिवरसिटि प्रेस, pp. 193–199, MR 0268189.
- ग्रोथेंडिक, A. (1958), "मट्टक-टेट पर एक नोट", जे. रेइन एंज्यू। गणित।, 1958 (200): 208–215, doi:10.1515/crll.1958.200.208, MR 0136607, S2CID 115548848
- Katz, निकोलस एम.; Messing, विलियम (1974), "सीमित क्षेत्रों में किस्मों के लिए रीमैन परिकल्पना के कुछ परिणाम", आविष्कार गणित, 23: 73–77, Bibcode:1974InMat..23...73K, doi:10.1007/BF01405203, MR 0332791, S2CID 121989640
- क्लेमन, स्टीवन एल. (1968), "बीजगणितीय चक्र और वेइल अनुमान", डिक्स ने स्कीमों के अनुरूपता को उजागर किया, एम्स्टर्डम: उत्तर-हॉलैंड, pp. 359–386, MR 0292838.
- मुरे, जे.पी. (1990), "एक बीजगणितीय सतह के मकसद पर", जे. रेइन एंज्यू। गणित।, 1990 (409): 190–204, doi:10.1515/crll.1990.409.190, MR 1061525, S2CID 117483201
- क्लेमन, स्टीवन एल. (1994), "मानक अनुमान", उद्देश्य (सिएटल, WA, 1991), शुद्ध गणित में संगोष्ठी की कार्यवाही, vol. 55, अमेरिकन गणितीय सोसायटी, pp. 3–20, MR 1265519.
- Šermenev, A. M. (1974), "एबेलियन किस्म का मोटिफ", कार्यात्मक. गुदा. मैं प्रिलोज़ेन, 8 (1): 55–61, MR 0335523
बाहरी संबंध
- बीजगणितीय चक्रों पर मानक अनुमानों पर प्रगति
- एनालॉग्स काहलेरीन्स डे निश्चित अनुमान डी वेइल। जे.-पी सेरे (एक्स्ट्रेट डी'यून लेट्रे ए ए. वेइल, 9 नवंबर 1959) स्कैन