सेग्रे एम्बेडिंग: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 40: Line 40:
   
   
सेग्रे किस्म <math>\Sigma_{n,m}</math> का श्रेणीबद्ध उत्पाद है <math>P^n\ </math> और <math>P^m</math>.<ref>{{cite web|last=McKernan|first=James|title=Algebraic Geometry Course, Lecture 6: Products and fibre products|url=http://math.mit.edu/~mckernan/Teaching/09-10/Autumn/18.725/l_6.pdf|work=online course material|accessdate=11 April 2014|year=2010}}</ref>
सेग्रे किस्म <math>\Sigma_{n,m}</math> का श्रेणीबद्ध उत्पाद है <math>P^n\ </math> और <math>P^m</math>.<ref>{{cite web|last=McKernan|first=James|title=Algebraic Geometry Course, Lecture 6: Products and fibre products|url=http://math.mit.edu/~mckernan/Teaching/09-10/Autumn/18.725/l_6.pdf|work=online course material|accessdate=11 April 2014|year=2010}}</ref>
प्रक्षेपण
प्रक्षेपण


Line 63: Line 64:
:<math>\det \left(\begin{matrix}Z_0&Z_1\\Z_2&Z_3\end{matrix}\right)  
:<math>\det \left(\begin{matrix}Z_0&Z_1\\Z_2&Z_3\end{matrix}\right)  
= Z_0Z_3 - Z_1Z_2.\ </math>
= Z_0Z_3 - Z_1Z_2.\ </math>
===सेग्रे तीन गुना===
===सेग्रे तीन गुना===
वो नक्शा
वो नक्शा
Line 74: Line 73:
विकर्ण की छवि <math>\Delta \subset P^n \times P^n</math> सेग्रे मानचित्र के अंतर्गत डिग्री दो की [[वेरोनीज़ किस्म]] है
विकर्ण की छवि <math>\Delta \subset P^n \times P^n</math> सेग्रे मानचित्र के अंतर्गत डिग्री दो की [[वेरोनीज़ किस्म]] है
:<math>\nu_2:P^n \to P^{n^2+2n}.\ </math>
:<math>\nu_2:P^n \to P^{n^2+2n}.\ </math>
==अनुप्रयोग==
==अनुप्रयोग==
क्योंकि सेग्रे मानचित्र प्रक्षेप्य स्थानों के श्रेणीबद्ध उत्पाद के लिए है, यह [[क्वांटम यांत्रिकी]] और [[क्वांटम सूचना सिद्धांत]] में गैर-उलझी स्थितियों का वर्णन करने के लिए प्राकृतिक मानचित्रण है। अधिक सटीक रूप से, सेग्रे मानचित्र वर्णन करता है कि [[प्रक्षेप्य हिल्बर्ट स्थान]] स्थान के उत्पादों को कैसे लिया जाए।<ref>{{Cite journal |last=Gharahi |first=Masoud |last2=Mancini |first2=Stefano |last3=Ottaviani |first3=Giorgio |date=2020-10-01 |title=बीजगणितीय ज्यामिति द्वारा मल्टीक्यूबिट उलझाव का सूक्ष्म संरचना वर्गीकरण|url=https://link.aps.org/doi/10.1103/PhysRevResearch.2.043003 |journal=Physical Review Research |volume=2 |issue=4 |pages=043003 |doi=10.1103/PhysRevResearch.2.043003|doi-access=free }}</ref>
क्योंकि सेग्रे मानचित्र प्रक्षेप्य स्थानों के श्रेणीबद्ध उत्पाद के लिए है, यह [[क्वांटम यांत्रिकी]] और [[क्वांटम सूचना सिद्धांत]] में गैर-उलझी स्थितियों का वर्णन करने के लिए प्राकृतिक मानचित्रण है। अधिक सटीक रूप से, सेग्रे मानचित्र वर्णन करता है कि [[प्रक्षेप्य हिल्बर्ट स्थान]] स्थान के उत्पादों को कैसे लिया जाए।<ref>{{Cite journal |last=Gharahi |first=Masoud |last2=Mancini |first2=Stefano |last3=Ottaviani |first3=Giorgio |date=2020-10-01 |title=बीजगणितीय ज्यामिति द्वारा मल्टीक्यूबिट उलझाव का सूक्ष्म संरचना वर्गीकरण|url=https://link.aps.org/doi/10.1103/PhysRevResearch.2.043003 |journal=Physical Review Research |volume=2 |issue=4 |pages=043003 |doi=10.1103/PhysRevResearch.2.043003|doi-access=free }}</ref>
बीजगणितीय आँकड़ों में, सेग्रे किस्में स्वतंत्रता मॉडल के अनुरूप हैं।
बीजगणितीय आँकड़ों में, सेग्रे किस्में स्वतंत्रता मॉडल के अनुरूप हैं।


Line 86: Line 84:
{{Reflist}}
{{Reflist}}


* {{Citation | last1=Harris | first1=Joe | author1-link=Joe Harris_(mathematician) | title=Algebraic Geometry: A First Course | publisher=[[Springer-Verlag]] | location=Berlin, New York | isbn=978-0-387-97716-4 | year=1995}}
* {{Citation | last1=Harris | first1=Joe | author1-link=Joe Harris_(mathematician) | title=बीजगणितीय ज्यामिति: एक पहला कोर्स | publisher=[[स्प्रिंगर-वेरलाग]] | location=बर्लिन, न्यूयॉर्क | isbn=978-0-387-97716-4 | year=1995}}
* {{citation
* {{citation
  | last = Hassett | first = Brendan | authorlink = Brendan Hassett
  | last = Hassett | first = Brendan | authorlink = Brendan Hassett
Line 94: Line 92:
  | mr = 2324354
  | mr = 2324354
  | page = 154
  | page = 154
  | publisher = Cambridge University Press
  | publisher = कैम्ब्रिज यूनिवर्सिटी प्रेस
  | title = Introduction to Algebraic Geometry
  | title = बीजगणितीय ज्यामिति का परिचय
  | year = 2007}}
  | year = 2007}}
[[Category: बीजगणितीय किस्में]] [[Category: प्रक्षेप्य ज्यामिति]]  
[[Category: बीजगणितीय किस्में]] [[Category: प्रक्षेप्य ज्यामिति]]  

Revision as of 16:42, 20 July 2023

गणित में, सेग्रे एम्बेडिंग का उपयोग प्रक्षेप्य ज्यामिति में दो प्रक्षेप्य स्थानों के कार्टेशियन उत्पाद (सेटों के) को प्रक्षेप्य विविधता के रूप में मानने के लिए किया जाता है। इसका नाम कॉनराड सेग्रे के नाम पर रखा गया है।

परिभाषा

सेग्रे मानचित्र को मानचित्र के रूप में परिभाषित किया जा सकता है

अंक की जोड़ी ले रहा हूँ उनके उत्पाद के लिए

(एक्सiYjशब्दकोषीय क्रम में लिया गया है)।

यहाँ, और कुछ मनमाने क्षेत्र (गणित) और अंकन पर प्रक्षेप्य सदिश स्थान हैं

अंतरिक्ष पर सजातीय निर्देशांक है। मानचित्र की छवि किस्म है, जिसे सेग्रे किस्म कहा जाता है। इसे कभी-कभी इस प्रकार लिखा जाता है .

चर्चा

रैखिक बीजगणित की भाषा में, ही क्षेत्र (गणित) K पर दिए गए वेक्टर रिक्त स्थान U और V के लिए, उनके कार्टेशियन उत्पाद को उनके टेंसर उत्पाद में मैप करने का प्राकृतिक तरीका है।

सामान्य तौर पर, इसके लिए इंजेक्शन लगाने की आवश्यकता नहीं है क्योंकि, के लिए में , में और कोई भी शून्येतर में ,

अंतर्निहित प्रक्षेप्य स्थानों पी(यू) और पी(वी) को ध्यान में रखते हुए, यह मानचित्रण किस्मों का रूपवाद बन जाता है

यह केवल सेट-सैद्धांतिक अर्थ में इंजेक्शन नहीं है: यह बीजगणितीय ज्यामिति के अर्थ में बंद विसर्जन है। यानी, कोई छवि के लिए समीकरणों का सेट दे सकता है। सांकेतिक परेशानी को छोड़कर, यह कहना आसान है कि ऐसे समीकरण क्या हैं: वे टेंसर उत्पाद से निर्देशांक के उत्पादों को फैक्टरिंग करने के दो तरीकों को व्यक्त करते हैं, जो दो अलग-अलग तरीकों से प्राप्त होते हैं जैसे कि यू से कुछ और वी से कुछ।

यह मानचित्रण या रूपवाद σ 'सेग्रे एम्बेडिंग' है। आयामों की गणना करते हुए, यह दर्शाता है कि आयाम एम और एन के प्रक्षेप्य स्थानों का उत्पाद आयाम में कैसे एम्बेड होता है

शास्त्रीय शब्दावली उत्पाद पर निर्देशांक को बहुसजातीय कहती है, और उत्पाद को k कारकों के-वे प्रक्षेप्य स्थान के लिए सामान्यीकृत किया जाता है।

गुण

सेग्रे किस्म निर्धारक किस्म का उदाहरण है; यह मैट्रिक्स के 2×2 माइनरों का शून्य स्थान है . अर्थात्, सेग्रे किस्म द्विघात बहुपदों का सामान्य शून्य स्थान है

यहाँ, सेग्रे मानचित्र की छवि पर प्राकृतिक समन्वय समझा जाता है।

सेग्रे किस्म का श्रेणीबद्ध उत्पाद है और .[1]

प्रक्षेपण

पहले कारक को सेग्रे किस्म को कवर करने वाले खुले उपसमुच्चय पर एम+1 मानचित्रों द्वारा निर्दिष्ट किया जा सकता है, जो उपसमुच्चय के प्रतिच्छेदन पर सहमत होते हैं। तय के लिए , नक्शा भेजकर दिया गया है को . समीकरण सुनिश्चित करें कि ये मानचित्र एक-दूसरे से सहमत हों, क्योंकि यदि अपने पास .

उत्पाद के रेशे रैखिक उपस्थान हैं। यानी चलो

पहले कारक का प्रक्षेपण हो; और इसी तरह दूसरे कारक के लिए. फिर मानचित्र की छवि

एक निश्चित बिंदु के लिए p कोडोमेन का रैखिक उपस्थान है।

उदाहरण

क्वाड्रिक

उदाहरण के लिए m = n = 1 के साथ हमें P में स्वयं के साथ प्रक्षेप्य रेखा के उत्पाद का एम्बेडिंग मिलता है3. छवि चतुर्भुज है, और इसमें रेखाओं के दो एक-पैरामीटर परिवार आसानी से देखे जा सकते हैं। जटिल संख्याओं पर यह काफी सामान्य बीजगणितीय वक्र#Singularities|गैर-एकवचन चतुर्भुज है। दे

P पर सजातीय निर्देशांक हों3, यह चतुर्भुज सारणिक द्वारा दिए गए द्विघात बहुपद के शून्य स्थान के रूप में दिया गया है

सेग्रे तीन गुना

वो नक्शा

सेग्रे थ्रीफोल्ड के नाम से जाना जाता है। यह तर्कसंगत सामान्य स्क्रॉल का उदाहरण है। सेग्रे का चौराहा तीन गुना और तीन-तल मुड़ा हुआ घन वक्र है.

वेरोनीज़ किस्म

विकर्ण की छवि सेग्रे मानचित्र के अंतर्गत डिग्री दो की वेरोनीज़ किस्म है

अनुप्रयोग

क्योंकि सेग्रे मानचित्र प्रक्षेप्य स्थानों के श्रेणीबद्ध उत्पाद के लिए है, यह क्वांटम यांत्रिकी और क्वांटम सूचना सिद्धांत में गैर-उलझी स्थितियों का वर्णन करने के लिए प्राकृतिक मानचित्रण है। अधिक सटीक रूप से, सेग्रे मानचित्र वर्णन करता है कि प्रक्षेप्य हिल्बर्ट स्थान स्थान के उत्पादों को कैसे लिया जाए।[2]

बीजगणितीय आँकड़ों में, सेग्रे किस्में स्वतंत्रता मॉडल के अनुरूप हैं।

पी की सेग्रे एम्बेडिंग2×पी2प में8आयाम 4 की एकमात्र स्कोर्ज़ा किस्म है।

संदर्भ

  1. McKernan, James (2010). "Algebraic Geometry Course, Lecture 6: Products and fibre products" (PDF). online course material. Retrieved 11 April 2014.
  2. Gharahi, Masoud; Mancini, Stefano; Ottaviani, Giorgio (2020-10-01). "बीजगणितीय ज्यामिति द्वारा मल्टीक्यूबिट उलझाव का सूक्ष्म संरचना वर्गीकरण". Physical Review Research. 2 (4): 043003. doi:10.1103/PhysRevResearch.2.043003.