स्थानीय परिमित समुच्चय: Difference between revisions
From Vigyanwiki
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
गणित में, स्थानीय रूप से परिमित | गणित में, '''स्थानीय रूप से परिमित स्थिति''' एक [[आंशिक रूप से ऑर्डर किया गया सेट|आंशिक रूप से ऑर्डर किया गया समूह]] ''P'' है, जैसे कि सभी ''x'', ''y'' ∈ ''P'' के लिए, अंतराल [''x'', ''y''] में अनेक तत्वों का एक सीमित समूह होता है। | ||
स्थानीय रूप से परिमित स्थिति '' | स्थानीय रूप से परिमित स्थिति ''P'' को देखते हुए हम इसकी ''[[घटना बीजगणित]]'' को परिभाषित कर सकते हैं। घटना बीजगणित के तत्व ऐसे कार्य हैं इस प्रकार जो ''P'' के प्रत्येक अंतराल [''x'', ''y''] को एक वास्तविक संख्या ƒ(x, y) निर्दिष्ट करते हैं। यह फलन परिभाषित उत्पाद के साथ एक सहयोगी बीजगणित बनाते हैं | ||
: <math>(f * g)(x,y):=\sum_{x \leq z \leq y} f(x,z) g(z,y).</math> | : <math>(f * g)(x,y):=\sum_{x \leq z \leq y} f(x,z) g(z,y).</math> | ||
[[घटना कोलजेब्रा]] की एक परिभाषा भी है। | [[घटना कोलजेब्रा]] की एक परिभाषा भी है। | ||
[[सैद्धांतिक भौतिकी]] में स्थानीय रूप से परिमित स्थिति को [[कारण समुच्चय]] भी कहा जाता है और इसे [[ अंतरिक्ष समय ]] के लिए एक मॉडल के रूप में उपयोग किया गया है। | [[सैद्धांतिक भौतिकी]] में '''स्थानीय रूप से परिमित स्थिति''' को [[कारण समुच्चय]] भी कहा जाता है और इसे [[ अंतरिक्ष समय |अंतरिक्ष समय]] के लिए एक मॉडल के रूप में उपयोग किया गया है। | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 06:55, 13 July 2023
गणित में, स्थानीय रूप से परिमित स्थिति एक आंशिक रूप से ऑर्डर किया गया समूह P है, जैसे कि सभी x, y ∈ P के लिए, अंतराल [x, y] में अनेक तत्वों का एक सीमित समूह होता है।
स्थानीय रूप से परिमित स्थिति P को देखते हुए हम इसकी घटना बीजगणित को परिभाषित कर सकते हैं। घटना बीजगणित के तत्व ऐसे कार्य हैं इस प्रकार जो P के प्रत्येक अंतराल [x, y] को एक वास्तविक संख्या ƒ(x, y) निर्दिष्ट करते हैं। यह फलन परिभाषित उत्पाद के साथ एक सहयोगी बीजगणित बनाते हैं
घटना कोलजेब्रा की एक परिभाषा भी है।
सैद्धांतिक भौतिकी में स्थानीय रूप से परिमित स्थिति को कारण समुच्चय भी कहा जाता है और इसे अंतरिक्ष समय के लिए एक मॉडल के रूप में उपयोग किया गया है।
संदर्भ
Stanley, Richard P. Enumerative Combinatorics, Volume I. Cambridge University Press, 1997. Pages 98, 113–116.