स्थानीय परिमित समुच्चय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 10: Line 10:
==संदर्भ==
==संदर्भ==
{{DEFAULTSORT:Locally Finite Poset}}[[Category: आदेश सिद्धांत]]
{{DEFAULTSORT:Locally Finite Poset}}[[Category: आदेश सिद्धांत]]
[[Richard P. Stanley|Stanley, Richard P.]] Enumerative Combinatorics, Volume I. Cambridge University Press, 1997. Pages 98, 113–116.{{algebra-stub}}
[[रिचर्ड पी. स्टेनली|स्टेनली, रिचर्ड पी.]] एन्यूमेरेटिव कॉम्बिनेटरिक्स, वॉल्यूम I. कैम्ब्रिज यूनिवर्सिटी प्रेस, 1997. पृष्ठ 98, 113-116।{{algebra-stub}}





Revision as of 06:57, 13 July 2023

गणित में, स्थानीय रूप से परिमित स्थिति एक आंशिक रूप से ऑर्डर किया गया समूह P है, जैसे कि सभी x, yP के लिए, अंतराल [x, y] में अनेक तत्वों का एक सीमित समूह होता है।

स्थानीय रूप से परिमित स्थिति P को देखते हुए हम इसकी घटना बीजगणित को परिभाषित कर सकते हैं। घटना बीजगणित के तत्व ऐसे कार्य हैं इस प्रकार जो P के प्रत्येक अंतराल [x, y] को एक वास्तविक संख्या ƒ(x, y) निर्दिष्ट करते हैं। यह फलन परिभाषित उत्पाद के साथ एक सहयोगी बीजगणित बनाते हैं

घटना कोलजेब्रा की एक परिभाषा भी है।

सैद्धांतिक भौतिकी में स्थानीय रूप से परिमित स्थिति को कारण समुच्चय भी कहा जाता है और इसे अंतरिक्ष समय के लिए एक मॉडल के रूप में उपयोग किया गया है।

संदर्भ

स्टेनली, रिचर्ड पी. एन्यूमेरेटिव कॉम्बिनेटरिक्स, वॉल्यूम I. कैम्ब्रिज यूनिवर्सिटी प्रेस, 1997. पृष्ठ 98, 113-116।