निर्माण योग्य सेट (टोपोलॉजी): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 13: Line 13:
हालाँकि, बड़ी जगहों के साथ बेहतर व्यवहार करने वाली परिभाषाओं के लिए एक संशोधन और दूसरी थोड़ी कमजोर परिभाषा की आवश्यकता होती है:
हालाँकि, बड़ी जगहों के साथ बेहतर व्यवहार करने वाली परिभाषाओं के लिए एक संशोधन और दूसरी थोड़ी कमजोर परिभाषा की आवश्यकता होती है:


परिभाषाएँ: एक उपसमुच्चय <math>Z</math> एक टोपोलॉजिकल स्पेस का <math>X</math> यदि रेट्रोकॉम्पैक्ट कहा जाता है <math>Z\cap U</math> प्रत्येक कॉम्पैक्ट ओपन उपसमुच्चय के लिए [[ सघन स्थान ]] है <math>U\subset X</math>. का एक उपसमुच्चय <math>X</math> यदि यह प्रपत्र के उपसमुच्चय का एक सीमित संघ है तो रचनात्मक है <math>U\cap (X - V)</math> दोनों कहाँ <math>U</math> और <math>V</math> के खुले और रेट्रोकॉम्पैक्ट उपसमुच्चय हैं <math>X</math>.
परिभाषाएँ: एक उपसमुच्चय <math>Z</math> एक टोपोलॉजिकल स्पेस का <math>X</math> यदि रेट्रोकॉम्पैक्ट कहा जाता है <math>Z\cap U</math> प्रत्येक कॉम्पैक्ट ओपन उपसमुच्चय के लिए [[ सघन स्थान |सघन स्थान]] है <math>U\subset X</math>. का एक उपसमुच्चय <math>X</math> यदि यह प्रपत्र के उपसमुच्चय का एक सीमित संघ है तो रचनात्मक है <math>U\cap (X - V)</math> दोनों कहाँ <math>U</math> और <math>V</math> के खुले और रेट्रोकॉम्पैक्ट उपसमुच्चय हैं <math>X</math>.
उपसमुच्चय <math>Z\subset X</math> यदि कोई [[कवर (टोपोलॉजी)]] है तो यह स्थानीय रूप से निर्माण योग्य है <math>(U_i)_{i\in I}</math> का <math>X</math> प्रत्येक की संपत्ति के साथ खुले उपसमुच्चय शामिल हैं <math>Z\cap U_i</math> का एक रचनात्मक उपसमुच्चय है <math>U_i</math>.
उपसमुच्चय <math>Z\subset X</math> यदि कोई [[कवर (टोपोलॉजी)]] है तो यह स्थानीय रूप से निर्माण योग्य है <math>(U_i)_{i\in I}</math> का <math>X</math> प्रत्येक की संपत्ति के साथ खुले उपसमुच्चय शामिल हैं <math>Z\cap U_i</math> का एक रचनात्मक उपसमुच्चय है <math>U_i</math>.
  <ref>{{harvnb|Grothendieck|Dieudonné|1961|loc= Ch. '''0'''<sub>III</sub>, Définitions (9.1.1), (9.1.2) and (9.1.11), pp. 12-14}}</ref><ref>{{Cite web|title=Definition 5.15.1 (tag 005G)|url=https://stacks.math.columbia.edu/tag/005G|access-date=2022-10-04|website=stacks.math.columbia.edu}}</ref>
  <ref>{{harvnb|Grothendieck|Dieudonné|1961|loc= Ch. '''0'''<sub>III</sub>, Définitions (9.1.1), (9.1.2) and (9.1.11), pp. 12-14}}</ref><ref>{{Cite web|title=Definition 5.15.1 (tag 005G)|url=https://stacks.math.columbia.edu/tag/005G|access-date=2022-10-04|website=stacks.math.columbia.edu}}</ref>
Line 21: Line 21:


किसी भी (जरूरी नहीं कि [[नोथेरियन स्थान]]) टोपोलॉजिकल स्पेस में, प्रत्येक रचनात्मक सेट में इसके बंद होने का एक सघन सेट खुला उपसमुच्चय होता है।<ref>Jinpeng An (2012). [https://doi.org/10.1007%2Fs10711-011-9603-2 "Rigid geometric structures, isometric actions, and algebraic quotients"]. Geom. Dedicata '''157''': 153–185.</ref>
किसी भी (जरूरी नहीं कि [[नोथेरियन स्थान]]) टोपोलॉजिकल स्पेस में, प्रत्येक रचनात्मक सेट में इसके बंद होने का एक सघन सेट खुला उपसमुच्चय होता है।<ref>Jinpeng An (2012). [https://doi.org/10.1007%2Fs10711-011-9603-2 "Rigid geometric structures, isometric actions, and algebraic quotients"]. Geom. Dedicata '''157''': 153–185.</ref>
शब्दावली: यहां दी गई परिभाषा एलिमेंट्स डी जियोमेट्री अल्जेब्रिक और [[ ढेर परियोजना ]] के पहले संस्करण में उपयोग की गई है। ईजीए के दूसरे संस्करण में रचनात्मक सेट (उपरोक्त परिभाषा के अनुसार) को वैश्विक रूप से रचनात्मक कहा जाता है जबकि रचनात्मक शब्द उपरोक्त स्थानीय रूप से रचनात्मक कहे जाने वाले के लिए आरक्षित है। <ref>{{harvnb|Grothendieck|Dieudonné|1971|loc= Ch. '''0'''<sub>I</sub>, Définitions (2.3.1), (2.3.2) and (2.3.10), pp. 55-57}}</ref>
शब्दावली: यहां दी गई परिभाषा एलिमेंट्स डी जियोमेट्री अल्जेब्रिक और [[ ढेर परियोजना |ढेर परियोजना]] के पहले संस्करण में उपयोग की गई है। ईजीए के दूसरे संस्करण में रचनात्मक सेट (उपरोक्त परिभाषा के अनुसार) को वैश्विक रूप से रचनात्मक कहा जाता है जबकि रचनात्मक शब्द उपरोक्त स्थानीय रूप से रचनात्मक कहे जाने वाले के लिए आरक्षित है। <ref>{{harvnb|Grothendieck|Dieudonné|1971|loc= Ch. '''0'''<sub>I</sub>, Définitions (2.3.1), (2.3.2) and (2.3.10), pp. 55-57}}</ref>





Revision as of 08:26, 21 July 2023

टोपोलॉजी में, रचनात्मक सेट एक टोपोलॉजिकल स्पेस के सबसेट का एक वर्ग है जिसमें अपेक्षाकृत सरल संरचना होती है। इनका उपयोग विशेष रूप से बीजगणितीय ज्यामिति और संबंधित क्षेत्रों में किया जाता है। एक प्रमुख परिणाम जिसे शेवेल्ली प्रमेय के नाम से जाना जाता है बीजगणितीय ज्यामिति से पता चलता है कि एक रचनात्मक सेट की छवि मानचित्र के एक महत्वपूर्ण वर्ग (गणित) के लिए रचनात्मक है (अधिक विशेष रूप से योजनाओं का आकारवाद) बीजगणितीय किस्मों (या अधिक सामान्यतः योजना (गणित))। इसके अलावा, योजनाओं, आकारिकी और शीव्स की बड़ी संख्या में स्थानीय ज्यामितीय गुण (स्थानीय रूप से) निर्माण योग्य हैं। बीजगणितीय ज्यामिति में विभिन्न प्रकार के रचनात्मक शीफ की परिभाषा में रचनात्मक सेट भी शामिल होते हैं और इंटरसेक्शन कोहोमोलॉजी

परिभाषाएँ

एक सरल परिभाषा, जो कई स्थितियों में पर्याप्त है, यह है कि एक रचनात्मक सेट स्थानीय रूप से बंद सेटों का एक सीमित संघ (सेट सिद्धांत) है। (एक सेट स्थानीय रूप से बंद होता है यदि यह एक खुले सेट और बंद सेट का प्रतिच्छेदन (सेट सिद्धांत) है।) हालाँकि, बड़ी जगहों के साथ बेहतर व्यवहार करने वाली परिभाषाओं के लिए एक संशोधन और दूसरी थोड़ी कमजोर परिभाषा की आवश्यकता होती है:

परिभाषाएँ: एक उपसमुच्चय एक टोपोलॉजिकल स्पेस का यदि रेट्रोकॉम्पैक्ट कहा जाता है प्रत्येक कॉम्पैक्ट ओपन उपसमुच्चय के लिए सघन स्थान है . का एक उपसमुच्चय यदि यह प्रपत्र के उपसमुच्चय का एक सीमित संघ है तो रचनात्मक है दोनों कहाँ और के खुले और रेट्रोकॉम्पैक्ट उपसमुच्चय हैं . उपसमुच्चय यदि कोई कवर (टोपोलॉजी) है तो यह स्थानीय रूप से निर्माण योग्य है का प्रत्येक की संपत्ति के साथ खुले उपसमुच्चय शामिल हैं का एक रचनात्मक उपसमुच्चय है .

[1][2]

समान रूप से टोपोलॉजिकल स्पेस के रचनात्मक उपसमुच्चय सबसे छोटा संग्रह हैं के उपसमुच्चय इसमें (i) सभी खुले रेट्रोकॉम्पैक्ट उपसमुच्चय शामिल हैं और (ii) इसमें सेट के सभी पूरक (सेट सिद्धांत) और परिमित संघ (और इसलिए परिमित प्रतिच्छेदन भी) शामिल हैं। दूसरे शब्दों में, रचनात्मक सेट रेट्रोकॉम्पैक्ट ओपन सबसेट द्वारा उत्पन्न बूलियन बीजगणित हैं।

स्थानीय रूप से नोथेरियन टोपोलॉजिकल स्पेस में, सभी उपसमुच्चय रेट्रोकॉम्पैक्ट हैं,[3] और इसलिए ऐसे स्थानों के लिए ऊपर दी गई सरलीकृत परिभाषा अधिक विस्तृत के बराबर है। बीजगणितीय ज्यामिति (सभी बीजगणितीय विविधता सहित) में आम तौर पर मिलने वाली अधिकांश योजनाएं स्थानीय रूप से नोथेरियन हैं, लेकिन ऐसे महत्वपूर्ण निर्माण हैं जो अधिक सामान्य योजनाओं की ओर ले जाते हैं।

किसी भी (जरूरी नहीं कि नोथेरियन स्थान) टोपोलॉजिकल स्पेस में, प्रत्येक रचनात्मक सेट में इसके बंद होने का एक सघन सेट खुला उपसमुच्चय होता है।[4] शब्दावली: यहां दी गई परिभाषा एलिमेंट्स डी जियोमेट्री अल्जेब्रिक और ढेर परियोजना के पहले संस्करण में उपयोग की गई है। ईजीए के दूसरे संस्करण में रचनात्मक सेट (उपरोक्त परिभाषा के अनुसार) को वैश्विक रूप से रचनात्मक कहा जाता है जबकि रचनात्मक शब्द उपरोक्त स्थानीय रूप से रचनात्मक कहे जाने वाले के लिए आरक्षित है। [5]


चेवेल्ली का प्रमेय

बीजगणितीय ज्यामिति में रचनात्मक सेटों के महत्व का एक प्रमुख कारण यह है कि (स्थानीय रूप से) रचनात्मक सेट की छवि (गणित) मानचित्रों (या आकारिकी) के एक बड़े वर्ग के लिए भी (स्थानीय रूप से) रचनात्मक होती है। मुख्य परिणाम यह है:

शेवेल्ली का प्रमेय. अगर बीजगणितीय_ज्यामिति की शब्दावली है#परिमित_प्रस्तुति योजनाओं का रूपवाद और तो, यह एक स्थानीय रूप से निर्माण योग्य उपसमुच्चय है में स्थानीय रूप से निर्माण योग्य भी है .[6][7][8] विशेष रूप से, बीजगणितीय विविधता की छवि को विविधता की आवश्यकता नहीं है, लेकिन (धारणाओं के तहत) हमेशा एक रचनात्मक सेट होता है। उदाहरण के लिए, मानचित्र वह भेजता है को छवि सेट है , जो विविधता नहीं है, बल्कि रचनात्मक है।

यदि रचनात्मक सेटों की सरलीकृत परिभाषा (परिभाषा में रेट्रोकॉम्पैक्ट ओपन सेटों को प्रतिबंधित किए बिना) का उपयोग किया गया तो ऊपर बताई गई व्यापकता में शेवेल्ली का प्रमेय विफल हो जाएगा।[9]


रचनात्मक गुण

योजनाओं के आकारिकी और योजनाओं पर क्वासिकोहेरेंट शीफ की बड़ी संख्या में स्थानीय गुण स्थानीय रूप से निर्माण योग्य उपसमुच्चय पर लागू होते हैं। ईजीए IV § 9[10] इसमें बड़ी संख्या में ऐसी संपत्तियां शामिल हैं। नीचे कुछ उदाहरण दिए गए हैं (जहां सभी संदर्भ ईजीए IV की ओर इशारा करते हैं):

  • अगर योजनाओं का एक सूक्ष्म रूप से प्रस्तुत रूपवाद है और परिमित रूप से प्रस्तुत अर्ध-सुसंगत का एक क्रम है -मॉड्यूल, फिर का सेट जिसके लिए सटीक स्थानीय रूप से निर्माण योग्य है। (प्रस्ताव (9.4.4))
  • अगर योजनाओं का एक सूक्ष्म रूप से प्रस्तुत रूपवाद है और एक सूक्ष्म रूप से प्रस्तुत अर्ध-सुसंगत है -मॉड्यूल, फिर का सेट जिसके लिए स्थानीय रूप से मुफ़्त है स्थानीय रूप से निर्माण योग्य है। (प्रस्ताव (9.4.7))
  • अगर योजनाओं का एक सूक्ष्म रूप से प्रस्तुत रूपवाद है और एक स्थानीय रूप से निर्माण योग्य उपसमुच्चय है, फिर का समुच्चय जिसके लिए में बंद (या खुला) है स्थानीय रूप से निर्माण योग्य है। (परिणाम (9.5.4))
  • होने देना एक योजना हो और का एक रूपवाद -योजनाएँ। सेट पर विचार करें का जिसके लिए प्रेरित रूपवाद फाइबर का खत्म कुछ संपत्ति है . तब यदि स्थानीय रूप से निर्माण योग्य है निम्नलिखित गुणों में से कोई एक है: विशेषण, उचित, परिमित, विसर्जन, बंद विसर्जन, खुला विसर्जन, समरूपता। (प्रस्ताव (9.6.1))
  • होने देना योजनाओं का एक परिमित रूप से प्रस्तुत रूपवाद बनें और सेट पर विचार करें का जिसके लिए फाइबर एक संपत्ति है . तब यदि स्थानीय रूप से निर्माण योग्य है निम्नलिखित गुणों में से कोई एक है: ज्यामितीय रूप से अपरिवर्तनीय, ज्यामितीय रूप से जुड़ा हुआ, ज्यामितीय रूप से कम किया हुआ। (प्रमेय (9.7.7))
  • होने देना योजनाओं का स्थानीय रूप से अंतिम रूप से प्रस्तुत रूपवाद बनें और सेट पर विचार करें का जिसके लिए फाइबर एक संपत्ति है . तब यदि स्थानीय रूप से निर्माण योग्य है निम्नलिखित गुणों में से कोई एक है: ज्यामितीय रूप से नियमित, ज्यामितीय रूप से सामान्य, ज्यामितीय रूप से कम। (प्रस्ताव (9.9.4))

इन रचनाशीलता परिणामों की एक महत्वपूर्ण भूमिका यह है कि ज्यादातर मामलों में प्रश्नों में रूपवाद को भी माना जाता है सपाट आकारवाद से यह पता चलता है कि विचाराधीन गुण वास्तव में एक खुले उपसमुच्चय में हैं। ऐसे परिणामों की एक बड़ी संख्या ईजीए IV § 12 में शामिल है।[11]


यह भी देखें

  • रचनात्मक टोपोलॉजी
  • निर्माण योग्य शीफ

टिप्पणियाँ

  1. Grothendieck & Dieudonné 1961, Ch. 0III, Définitions (9.1.1), (9.1.2) and (9.1.11), pp. 12-14
  2. "Definition 5.15.1 (tag 005G)". stacks.math.columbia.edu. Retrieved 2022-10-04.
  3. Grothendieck & Dieudonné 1961, Ch. 0III, Sect. (9.1), p. 12
  4. Jinpeng An (2012). "Rigid geometric structures, isometric actions, and algebraic quotients". Geom. Dedicata 157: 153–185.
  5. Grothendieck & Dieudonné 1971, Ch. 0I, Définitions (2.3.1), (2.3.2) and (2.3.10), pp. 55-57
  6. Grothendieck & Dieudonné 1964, Ch. I, Théorème (1.8.4), p. 239.
  7. "Theorem 29.22.3 (Chevalley's Theorem) (tag 054K)". stacks.math.columbia.edu. Retrieved 2022-10-04.
  8. Grothendieck & Dieudonné 1971, Ch. I, Théorème (7.1.4), p. 329.
  9. "Section 109.24 Images of locally closed subsets (tag 0GZL)". stacks.math.columbia.edu. Retrieved 2022-10-04.
  10. Grothendieck & Dieudonné 1966, Ch. IV, § 9 Propriétés constructibles, pp. 54-94.
  11. Grothendieck & Dieudonné 1966, Ch. IV, § 12 Étude des fibres des morphismes plats de présentation finie, pp. 173-187.


संदर्भ


बाहरी संबंध