पियर्स अपघटन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 6: Line 6:
==एसोसिएटिव बीजगणित के लिए पियर्स अपघटन==
==एसोसिएटिव बीजगणित के लिए पियर्स अपघटन==


यदि निष्क्रिय व्यक्ति है (<sup>2</sup> = e) एसोसिएटिव बीजगणित A में, फिर दो तरफा Peirce अपघटन A को eAe, eA(1 − e), (1 − e)Ae, और (1 − e) के प्रत्यक्ष योग के रूप में लिखता है। ए(1 − ई). बाएँ और दाएँ पियर्स अपघटन भी हैं, जहाँ बायाँ अपघटन A को eA और (1 - e)A के प्रत्यक्ष योग के रूप में लिखता है, और दायाँ A को Ae और A(1 - e) के प्रत्यक्ष योग के रूप में लिखता है।
यदि एसोसिएटिव बीजगणित ''A'' में ''e'' एक निष्क्रिय (''e''<sup>2</sup> = ''e'') है, तो दो तरफा पीयरस अपघटन ''A'' को ''eAe'', ''eA''(1 − ''e''), (1 − ''e'')''Ae'', और (1 − ''e'')''A''(1 − ''e'') के प्रत्यक्ष योग के रूप में लिखता है। बाएँ और दाएँ पियर्स अपघटन भी हैं, जहाँ बायाँ अपघटन ''A'' को ''eA'' और (1 − ''e'')''A'' के प्रत्यक्ष योग के रूप में लिखता है, और दायाँ ''A'' को Ae और ''A''(1 − ''e'') के प्रत्यक्ष योग के रूप में लिखता है।


अधिक सामान्यतः, यदि <sub>1</sub>, ..., यह है<sub>''n''</sub> योग 1 के साथ पारस्परिक रूप से ऑर्थोगोनल इडेम्पोटेंट हैं, तो रिक्त स्थान ई का प्रत्यक्ष योग है<sub>''i''</sub>किन्तु<sub>''j''</sub> 1 ≤ i, j ≤ n के लिए।
अधिक आम तौर पर, यदि e<sub>1</sub>, ..., e<sub>n</sub> योग 1 के साथ पारस्परिक रूप से ऑर्थोगोनल इडेम्पोटेंट हैं, तो A 1 ≤ ''i'', ''j'' ≤ ''n'' के लिए रिक्त स्थान ''e<sub>i</sub>Ae<sub>j</sub>''  का प्रत्यक्ष योग है।


==ब्लॉक==
==ब्लॉक==

Revision as of 08:07, 21 July 2023

रिंग सिद्धांत में, पीयर्स अपघटन /ˈpɜːrs/ बीजगणित का एक अपघटन है जो निष्क्रिय तत्व (रिंग सिद्धांत) के ईजेनस्पेस के योग के रूप में होता है।

एसोसिएटिव बीजगणित के लिए पीयर्स अपघटन बेंजामिन पीयर्स (1870, प्रस्ताव 41, पृष्ठ 13) द्वारा प्रस्तुत किया गया था। जॉर्डन बीजगणित के लिए एक समान किन्तु अधिक जटिल पीयर्स अपघटन अल्बर्ट (1947) द्वारा पेश किया गया था।

एसोसिएटिव बीजगणित के लिए पियर्स अपघटन

यदि एसोसिएटिव बीजगणित A में e एक निष्क्रिय (e2 = e) है, तो दो तरफा पीयरस अपघटन A को eAe, eA(1 − e), (1 − e)Ae, और (1 − e)A(1 − e) के प्रत्यक्ष योग के रूप में लिखता है। बाएँ और दाएँ पियर्स अपघटन भी हैं, जहाँ बायाँ अपघटन A को eA और (1 − e)A के प्रत्यक्ष योग के रूप में लिखता है, और दायाँ A को Ae और A(1 − e) के प्रत्यक्ष योग के रूप में लिखता है।

अधिक आम तौर पर, यदि e1, ..., en योग 1 के साथ पारस्परिक रूप से ऑर्थोगोनल इडेम्पोटेंट हैं, तो A 1 ≤ i, jn के लिए रिक्त स्थान eiAej का प्रत्यक्ष योग है।

ब्लॉक

किसी रिंग के निष्क्रिय को केंद्रीय कहा जाता है यदि वह रिंग के सभी तत्वों के साथ संचार करता है।

दो इडेम्पोटेंट्स , एफ को ऑर्थोगोनल कहा जाता है यदि ईएफ = एफई = 0।

इडेम्पोटेंट को आदिम कहा जाता है यदि यह शून्येतर है और इसे दो ऑर्थोगोनल नॉनजेरो इडेम्पोन्ट्स के योग के रूप में नहीं लिखा जा सकता है।

निष्क्रिय को ब्लॉक या केंद्रीय रूप से आदिम कहा जाता है यदि यह गैर-शून्य और केंद्रीय है और इसे दो ऑर्थोगोनल गैर-शून्य केंद्रीय निष्क्रियता के योग के रूप में नहीं लिखा जा सकता है। इस मामले में आदर्श ईआर को कभी-कभी ब्लॉक भी कहा जाता है।

यदि किसी वलय की पहचान 1 R को योग के रूप में लिखा जा सकता है

1 = 1 + ... + औरn

ऑर्थोगोनल नॉनज़ेरो सेंट्रली प्रिमिटिव इडेम्पोटेंट के, तो ये इडेम्पोटेंट क्रम के अनुसार अद्वितीय होते हैं और इन्हें ब्लॉक या रिंग आर कहा जाता है। इस मामले में वलय आर को सीधे योग के रूप में लिखा जा सकता है

आर = 1आर + ... + ईnआर

अविभाज्य छल्लों का, जिन्हें कभी-कभी आर के ब्लॉक भी कहा जाता है।

संदर्भ

  • Albert, A. Adrian (1947), "A structure theory for Jordan algebras", Annals of Mathematics, Second Series, 48: 546–567, doi:10.2307/1969128, ISSN 0003-486X, JSTOR 1969128, MR 0021546
  • Lam, T. Y. (2001), A first course in noncommutative rings, Graduate Texts in Mathematics, vol. 131 (2nd ed.), Berlin, New York: Springer-Verlag, ISBN 978-0-387-95183-6, MR 1838439
  • Peirce, Benjamin (1870), Linear associative algebra, ISBN 978-0-548-94787-6
  • Skornyakov, L.A. (2001) [1994], "पियर्स अपघटन", Encyclopedia of Mathematics, EMS Press


बाहरी संबंध