सर्वज्ञता का सीमित सिद्धांत: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Mathematical concept}}[[रचनात्मक गणित]] में, '''सर्वज्ञता का सीमित सिद्धांत''' (एलपीओ) और सर्वज्ञता का कम सीमित सिद्धांत (एलएलपीओ) ऐसे सिद्धांत हैं जो गैर-रचनात्मक हैं लेकिन बहिष्कृत मध्य के पूर्ण कानून से कमजोर हैं। इनका उपयोग किसी तर्क के लिए आवश्यक गैर-रचनात्मकता की मात्रा को मापने के लिए किया जाता है, जैसा कि रचनात्मक रिवर्स गणित में होता है। ये सिद्धांत एल.ई.जे. के अर्थ में कमजोर प्रतिउदाहरणों से भी संबंधित हैं। ब्रौवर.
{{Short description|Mathematical concept}}[[रचनात्मक गणित]] में, '''सर्वज्ञता का सीमित सिद्धांत''' (एलपीओ) और सर्वज्ञता का कम सीमित सिद्धांत (एलएलपीओ) ऐसे सिद्धांत हैं जो गैर-रचनात्मक हैं किन्तु  बहिष्कृत मध्य के पूर्ण कानून से अशक्त हैं। इनका उपयोग किसी तर्क के लिए आवश्यक गैर-रचनात्मकता की मात्रा को मापने के लिए किया जाता है, जैसा कि रचनात्मक रिवर्स गणित में होता है। ये सिद्धांत ब्रौवर एल.ई.जे. के अर्थ में अशक्त प्रतिउदाहरणों से भी संबंधित हैं। .


==परिभाषाएँ==
==परिभाषाएँ==
सर्वज्ञता का सीमित सिद्धांत बताता है {{harv|Bridges|Richman|1987|p=3}}:
इस प्रकार से सर्वज्ञता का सीमित सिद्धांत बताता है {{harv|Bridges|Richman|1987|p=3}}:
:एलपीओ: किसी भी क्रम के लिए <math>a_0</math>, <math>a_1</math>, ...ऐसे कि प्रत्येक <math>a_i</math> भी है <math>0</math> या <math>1</math>, निम्नलिखित धारण करता है: या तो <math>a_i=0</math> सभी के लिए <math>i</math>, या वहाँ  है <math>k</math> साथ <math>a_k=1</math>. <ref>{{Cite book|title=रचनात्मक बीजगणित में एक पाठ्यक्रम|last=Mines|first=Ray|publisher=Springer-Verlag|others=Richman, Fred and Ruitenburg, Wim|year=1988|isbn=0387966404|location=New York|pages=4–5|oclc=16832703}}</ref>
:एलपीओ: किसी भी अनुक्रम  <math>a_0</math>, <math>a_1</math>, ... के लिए जैसे कि प्रत्येक <math>a_i</math> या तो <math>0</math> या <math>1</math>, है, निम्नलिखित मान्य है: या तो सभी i के लिए <math>a_i=0</math>, या वहां <math>a_k=1</math> के साथ एक <math>k</math> है।<ref>{{Cite book|title=रचनात्मक बीजगणित में एक पाठ्यक्रम|last=Mines|first=Ray|publisher=Springer-Verlag|others=Richman, Fred and Ruitenburg, Wim|year=1988|isbn=0387966404|location=New York|pages=4–5|oclc=16832703}}</ref>
दूसरे विच्छेद को इस प्रकार व्यक्त किया जा सकता है <math>\exists k. a_k \neq 0</math> और रचनात्मक रूप से पहले के निषेध से अधिक मजबूत है, <math>\neg\forall k. a_k = 0</math>. वह कमजोर स्कीमा जिसमें पहले को बाद वाले से बदल दिया जाता है, 'डब्ल्यूएलपीओ' कहलाती है और बहिष्कृत मध्य के विशेष उदाहरणों का प्रतिनिधित्व करती है।<ref>{{Cite arXiv|eprint=1804.05495|title=रचनात्मक उलटा गणित|class=math.LO|last1=Diener|first1=Hannes|year=2020}}</ref>
दूसरे विच्छेद को <math>\exists k. a_k \neq 0</math> के रूप में व्यक्त किया जा सकता है और यह पहले <math>\neg\forall k. a_k = 0</math> के निषेध की तुलना में रचनात्मक रूप से अधिक समष्टि  है। इस प्रकार से अशक्त स्कीमा जिसमें पूर्व को बाद वाले से परिवर्तन कर  दिया जाता है, उसे  'डब्ल्यूएलपीओ' कहा जाता है और बहिष्कृत मध्य के विशेष उदाहरणों का प्रतिनिधित्व करता है।<ref>{{Cite arXiv|eprint=1804.05495|title=रचनात्मक उलटा गणित|class=math.LO|last1=Diener|first1=Hannes|year=2020}}</ref>


सर्वज्ञता का कम सीमित सिद्धांत कहता है:
सर्वज्ञता का कम सीमित सिद्धांत कहता है:
:एलएलपीओ: किसी भी क्रम के लिए <math>a_0</math>, <math>a_1</math>, ...ऐसे कि प्रत्येक <math>a_i</math> भी है <math>0</math> या <math>1</math>, और ऐसा कि अधिकतम   <math>a_i</math> गैर-शून्य है, तो निम्नलिखित मान्य है: या तो <math>a_{2i}=0</math> सभी के लिए <math>i</math>, या <math>a_{2i+1}=0</math> सभी के लिए <math>i</math>, कहाँ <math>a_{2i}</math> और <math>a_{2i+1}</math> क्रमशः सम और विषम सूचकांक वाली प्रविष्टियाँ हैं।
:एलएलपीओ: किसी भी अनुक्रम  <math>a_0</math>, <math>a_1</math>, ... के लिए, जैसे कि प्रत्येक <math>a_i</math> या तो <math>0</math> या <math>1</math> है, और ऐसा कि अधिकतम एक <math>a_i</math> गैर-शून्य है, निम्नलिखित मान्य है : या तो सभी <math>i</math> के लिए <math>a_{2i}=0</math>, या सभी <math>i</math> के लिए <math>a_{2i+1}=0                                                                                                                                                                                                                                                                                                                                                                                                             </math>, जहां <math>a_{2i}</math> और <math>a_{2i+1}=0                                                                                                                                                                                                      </math> क्रमशः सम और विषम सूचकांक वाली प्रविष्टियाँ हैं।


यह रचनात्मक रूप से सिद्ध किया जा सकता है कि बहिष्कृत मध्य का नियम एलपीओ को दर्शाता है, और एलपीओ का तात्पर्य एलएलपीओ से है। हालाँकि, इनमें से किसी भी निहितार्थ को रचनात्मक गणित की विशिष्ट प्रणालियों में उलटा नहीं किया जा सकता है।
यह रचनात्मक रूप से सिद्ध किया जा सकता है कि बहिष्कृत मध्य का नियम एलपीओ को दर्शाता है, और एलपीओ का तात्पर्य एलएलपीओ से है। चूंकि , इनमें से किसी भी निहितार्थ को रचनात्मक गणित की विशिष्ट प्रणालियों में परिवर्तित नहीं किया जा सकता है।


===शब्दावली===
===शब्दावली===
सर्वज्ञता शब्द  विचार प्रयोग से आया है कि  गणितज्ञ कैसे बता सकता है कि एलपीओ के निष्कर्ष में दो मामलों में से कौन सा  दिए गए अनुक्रम के लिए सही है। <math>(a_i)</math>. प्रश्न का उत्तर है वहाँ  <math>k</math> साथ <math>a_k=1</math>? नकारात्मक रूप से, यह मानते हुए कि उत्तर नकारात्मक है, संपूर्ण अनुक्रम का सर्वेक्षण करने की आवश्यकता प्रतीत होती है। क्योंकि इसके लिए अनंत शब्दों की जांच की आवश्यकता होगी, इस निर्धारण को संभव बताने वाले स्वयंसिद्ध सिद्धांत को सर्वज्ञता सिद्धांत करार दिया गया था {{harvtxt|Bishop|1967}}.
सर्वज्ञता शब्द  विचार प्रयोग से आया है कि  गणितज्ञ कैसे बता सकता है कि एलपीओ के निष्कर्ष में दो मामलों में से कौन सा  दिए गए अनुक्रम के लिए सही है।यदि  <math>(a_i)</math>. प्रश्न का उत्तर है जहाँ    <math>k</math> साथ <math>a_k=1                                                                                                                                                                                                           </math>? ऋणात्मक  रूप से, यह मानते हुए कि उत्तर ऋणात्मक  है, संपूर्ण अनुक्रम का सर्वेक्षण करने की आवश्यकता प्रतीत होती है। क्योंकि इसके लिए अनंत शब्दों की जांच की आवश्यकता होगी, इस निर्धारण को संभव बताने वाले स्वयंसिद्ध सिद्धांत को सर्वज्ञता सिद्धांत करार दिया गया था {{harvtxt|Bishop|1967}}.


==वेरिएंट==
==वेरिएंट==


===तार्किक संस्करण===
===तार्किक संस्करण===
दोनों सिद्धांतों को प्राकृतिक पर निर्णय लेने योग्य विधेय के संदर्भ में ढालकर, विशुद्ध रूप से तार्किक सिद्धांतों के रूप में व्यक्त किया जा सकता है। अर्थात। <math>P</math> जिसके लिए <math>\forall n. P(n)\lor \neg P(n)</math> धारण करता है.
दोनों सिद्धांतों को प्रकृति पर निर्णय लेने योग्य विधेय के संदर्भ में स्वरुप , विशुद्ध रूप से तार्किक सिद्धांतों के रूप में व्यक्त किया जा सकता है। अर्थात। <math>P</math> जिसके लिए <math>\forall n. P(n)\lor \neg P(n)</math> धारण करता है.  


छोटा सिद्धांत उस डी मॉर्गन के नियमों के  विधेय संस्करण से मेल खाता है#Intuitionistic_logic|डी मॉर्गन का नियम जो [[अंतर्ज्ञानवादी तर्क]] को नहीं रखता है, यानी  संयोजन के निषेध की वितरणशीलता।
दो सिद्धांतों को पूर्ण रूप से तार्किक सिद्धांतों के रूप में व्यक्त किया जा सकता है, इसे प्राकृतिक <math>P</math> पर निर्णायक विधेय के संदर्भ में प्रयुक्त किया  जा सकता है जिसके लिए <math>\forall n. P(n)\lor \neg P(n)</math> मान्य है।
 
छोटा सिद्धांत उस डी मॉर्गन के नियमों के  विधेय संस्करण से मेल खाता है जिस प्रकार से डी मॉर्गन का नियम है जो [[अंतर्ज्ञानवादी तर्क]] को नहीं रखता है, अर्थात    संयोजन के निषेध की वितरणशीलता होते है।


===विश्लेषणात्मक संस्करण===
===विश्लेषणात्मक संस्करण===
[[रचनात्मक विश्लेषण]] में दोनों सिद्धांतों के समान गुण हैं। विश्लेषणात्मक एलपीओ बताता है कि प्रत्येक वास्तविक संख्या ट्राइटोक्टोमी को संतुष्ट करती है <math> x < 0 </math> या <math> x = 0 </math> या <math> x > 0 </math> . विश्लेषणात्मक एलएलपीओ का कहना है कि प्रत्येक वास्तविक संख्या डिटोचटॉमी को संतुष्ट करती है <math> x \geq 0 </math> या <math> x \leq 0 </math>, जबकि विश्लेषणात्मक मार्कोव का सिद्धांत कहता है कि यदि <math> x \le 0 </math> तो फिर झूठ है <math> x > 0 </math>.
इस प्रकार से [[रचनात्मक विश्लेषण]] में दोनों सिद्धांतों में वास्तविक संख्याओं के सिद्धांत में समान गुण हैं। विश्लेषणात्मक एलपीओ दर्शाता  है कि प्रत्येक वास्तविक संख्या ट्राइटोक्टोमी <math> x < 0 </math> या <math> x = 0 </math> या <math> x \geq 0 </math> को संतुष्ट करती है। और  विश्लेषणात्मक एलएलपीओ दर्शाता है कि प्रत्येक वास्तविक संख्या डाइटोक्टोमी <math> x \geq 0 </math> या <math> x \le 0 </math> को संतुष्ट करती है, जबकि विश्लेषणात्मक मार्कोव का सिद्धांत कहता है कि यदि <math> x \le 0 </math> असत्य  है,


यदि सभी तीन विश्लेषणात्मक सिद्धांतों को डेडेकाइंड या कॉची वास्तविक संख्याओं के लिए माना जाता है, तो उनके अंकगणितीय संस्करण का संकेत मिलता है, जबकि यदि हम (कमजोर) गणनीय विकल्प मानते हैं, तो इसका विपरीत सत्य है, जैसा कि दिखाया गया है {{harvtxt|Bishop|1967}}.
तो <math> x \le 0 </math> यदि मान लिया जाए तो सभी तीन विश्लेषणात्मक सिद्धांत डेडेकाइंड या कॉची की वास्तविक संख्याओं को रखने से उनके अंकगणितीय संस्करण का पता चलता है, जबकि यदि हम (अशक्त) गणनीय विकल्प मानते हैं, तो इसका विपरीत सत्य है, जैसा कि {{harvtxt|Bishop|1967}}. में दिखाया गया है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 23:01, 19 July 2023

रचनात्मक गणित में, सर्वज्ञता का सीमित सिद्धांत (एलपीओ) और सर्वज्ञता का कम सीमित सिद्धांत (एलएलपीओ) ऐसे सिद्धांत हैं जो गैर-रचनात्मक हैं किन्तु बहिष्कृत मध्य के पूर्ण कानून से अशक्त हैं। इनका उपयोग किसी तर्क के लिए आवश्यक गैर-रचनात्मकता की मात्रा को मापने के लिए किया जाता है, जैसा कि रचनात्मक रिवर्स गणित में होता है। ये सिद्धांत ब्रौवर एल.ई.जे. के अर्थ में अशक्त प्रतिउदाहरणों से भी संबंधित हैं। .

परिभाषाएँ

इस प्रकार से सर्वज्ञता का सीमित सिद्धांत बताता है (Bridges & Richman 1987, p. 3):

एलपीओ: किसी भी अनुक्रम , , ... के लिए जैसे कि प्रत्येक या तो या , है, निम्नलिखित मान्य है: या तो सभी i के लिए , या वहां के साथ एक है।[1]

दूसरे विच्छेद को के रूप में व्यक्त किया जा सकता है और यह पहले के निषेध की तुलना में रचनात्मक रूप से अधिक समष्टि है। इस प्रकार से अशक्त स्कीमा जिसमें पूर्व को बाद वाले से परिवर्तन कर दिया जाता है, उसे 'डब्ल्यूएलपीओ' कहा जाता है और बहिष्कृत मध्य के विशेष उदाहरणों का प्रतिनिधित्व करता है।[2]

सर्वज्ञता का कम सीमित सिद्धांत कहता है:

एलएलपीओ: किसी भी अनुक्रम , , ... के लिए, जैसे कि प्रत्येक या तो या है, और ऐसा कि अधिकतम एक गैर-शून्य है, निम्नलिखित मान्य है : या तो सभी के लिए , या सभी के लिए , जहां और क्रमशः सम और विषम सूचकांक वाली प्रविष्टियाँ हैं।

यह रचनात्मक रूप से सिद्ध किया जा सकता है कि बहिष्कृत मध्य का नियम एलपीओ को दर्शाता है, और एलपीओ का तात्पर्य एलएलपीओ से है। चूंकि , इनमें से किसी भी निहितार्थ को रचनात्मक गणित की विशिष्ट प्रणालियों में परिवर्तित नहीं किया जा सकता है।

शब्दावली

सर्वज्ञता शब्द विचार प्रयोग से आया है कि गणितज्ञ कैसे बता सकता है कि एलपीओ के निष्कर्ष में दो मामलों में से कौन सा दिए गए अनुक्रम के लिए सही है।यदि . प्रश्न का उत्तर है जहाँ साथ ? ऋणात्मक रूप से, यह मानते हुए कि उत्तर ऋणात्मक है, संपूर्ण अनुक्रम का सर्वेक्षण करने की आवश्यकता प्रतीत होती है। क्योंकि इसके लिए अनंत शब्दों की जांच की आवश्यकता होगी, इस निर्धारण को संभव बताने वाले स्वयंसिद्ध सिद्धांत को सर्वज्ञता सिद्धांत करार दिया गया था Bishop (1967).

वेरिएंट

तार्किक संस्करण

दोनों सिद्धांतों को प्रकृति पर निर्णय लेने योग्य विधेय के संदर्भ में स्वरुप , विशुद्ध रूप से तार्किक सिद्धांतों के रूप में व्यक्त किया जा सकता है। अर्थात। जिसके लिए धारण करता है.

दो सिद्धांतों को पूर्ण रूप से तार्किक सिद्धांतों के रूप में व्यक्त किया जा सकता है, इसे प्राकृतिक पर निर्णायक विधेय के संदर्भ में प्रयुक्त किया जा सकता है जिसके लिए मान्य है।

छोटा सिद्धांत उस डी मॉर्गन के नियमों के विधेय संस्करण से मेल खाता है जिस प्रकार से डी मॉर्गन का नियम है जो अंतर्ज्ञानवादी तर्क को नहीं रखता है, अर्थात संयोजन के निषेध की वितरणशीलता होते है।

विश्लेषणात्मक संस्करण

इस प्रकार से रचनात्मक विश्लेषण में दोनों सिद्धांतों में वास्तविक संख्याओं के सिद्धांत में समान गुण हैं। विश्लेषणात्मक एलपीओ दर्शाता है कि प्रत्येक वास्तविक संख्या ट्राइटोक्टोमी या या को संतुष्ट करती है। और विश्लेषणात्मक एलएलपीओ दर्शाता है कि प्रत्येक वास्तविक संख्या डाइटोक्टोमी या को संतुष्ट करती है, जबकि विश्लेषणात्मक मार्कोव का सिद्धांत कहता है कि यदि असत्य है,

तो यदि मान लिया जाए तो सभी तीन विश्लेषणात्मक सिद्धांत डेडेकाइंड या कॉची की वास्तविक संख्याओं को रखने से उनके अंकगणितीय संस्करण का पता चलता है, जबकि यदि हम (अशक्त) गणनीय विकल्प मानते हैं, तो इसका विपरीत सत्य है, जैसा कि Bishop (1967). में दिखाया गया है।

यह भी देखें

  • रचनात्मक विश्लेषण

संदर्भ

  1. Mines, Ray (1988). रचनात्मक बीजगणित में एक पाठ्यक्रम. Richman, Fred and Ruitenburg, Wim. New York: Springer-Verlag. pp. 4–5. ISBN 0387966404. OCLC 16832703.
  2. Diener, Hannes (2020). "रचनात्मक उलटा गणित". arXiv:1804.05495 [math.LO].

बाहरी संबंध