अवशिष्ट (सम्मिश्र विश्लेषण): Difference between revisions
No edit summary |
No edit summary |
||
Line 87: | Line 87: | ||
===[[अनंत पर अवशेष]]=== | ===[[अनंत पर अवशेष]]=== | ||
सामान्यतः, अनंत पर अवशेष को इस प्रकार परिभाषित किया गया है: | |||
: <math> \operatorname{Res}(f(z), \infty) = -\operatorname{Res}\left(\frac{1}{z^2} f\left(\frac 1 z \right), 0\right).</math> | : <math> \operatorname{Res}(f(z), \infty) = -\operatorname{Res}\left(\frac{1}{z^2} f\left(\frac 1 z \right), 0\right).</math> | ||
यदि निम्नलिखित | यदि निम्नलिखित नियम पूर्ण होते है: | ||
:<math> \lim_{|z| \to \infty} f(z) = 0,</math> | :<math> \lim_{|z| \to \infty} f(z) = 0,</math> | ||
Line 96: | Line 96: | ||
:<math> \operatorname{Res}(f, \infty) = -\lim_{|z| \to \infty} z \cdot f(z).</math> | :<math> \operatorname{Res}(f, \infty) = -\lim_{|z| \to \infty} z \cdot f(z).</math> | ||
यदि इसके | यदि इसके अतिरिक्त | ||
:<math> \lim_{|z| \to \infty} f(z) = c \neq 0,</math> | :<math> \lim_{|z| \to \infty} f(z) = c \neq 0,</math> | ||
तो अनंत पर अवशेष है | तो अनंत पर अवशेष है, | ||
:<math> \operatorname{Res}(f, \infty) = \lim_{|z| \to \infty} z^2 \cdot f'(z).</math> | :<math> \operatorname{Res}(f, \infty) = \lim_{|z| \to \infty} z^2 \cdot f'(z).</math> | ||
होलोमोर्फिक | होलोमोर्फिक फलन के लिए पृथक विलक्षणताओं पर अवशेषों और अनंत पर अवशेषों का योग शून्य है। | ||
=== श्रृंखला विधियाँ === | === श्रृंखला विधियाँ === | ||
यदि किसी फलन के | यदि किसी फलन के भागो या सभी को टेलर श्रृंखला या लॉरेंट श्रृंखला में विस्तारित किया जा सकता है, जो संभव हो सकता है, यदि भागों या पूर्ण फलन में मानक श्रृंखला विस्तार हो, तो अवशेष की गणना करना अन्य विधियों की तुलना में अत्यधिक सरल है। | ||
{{ordered list | {{ordered list |
Revision as of 18:37, 21 July 2023
Mathematical analysis → Complex analysis |
Complex analysis |
---|
Complex numbers |
Complex functions |
Basic Theory |
Geometric function theory |
People |
|
गणित में, अधिक विशेष रूप से जटिल विश्लेषण में, अवशेष जटिल संख्या है, जो गणितीय विलक्षणता को घेरने वाले पथ के साथ मेरोमोर्फिक फलन के लाइन इंटीग्रल के समानुपाती होती है। (अधिक सामान्यतः, अवशेषों की गणना किसी भी फलन के लिए की जा सकती है यह असतत बिंदुओं {ak}k, को त्यागकर होलोमोर्फिक फलन है, संभवता उनमें से कुछ आवश्यक विलक्षणता हों।) अवशेषों की गणना अत्यधिक सरलता से की जा सकती है और ज्ञात होने पर, अवशेष प्रमेय के माध्यम से सामान्य समोच्च अभिन्न अंग के निर्धारण की अनुमति मिलती है।
परिभाषा
मेरोमोर्फिक फलन का अवशेष पृथक विलक्षणता पर , प्रायः निरूपित किया जाता है। , , या , अद्वितीय मान है ऐसा है कि छिद्रित डिस्क में विश्लेषणात्मक फलन एंटीडेरिवेटिव (जटिल विश्लेषण) होता है।
वैकल्पिक रूप से, अवशेषों की गणना लॉरेंट श्रृंखला के विस्तार को शोधकर की जा सकती है, और अवशेषों को लॉरेंट श्रृंखला के गुणांक a−1 के रूप में परिभाषित किया जा सकता है।
अवशेष की परिभाषा को इच्छानुसार रीमैन सतहों के लिए सामान्यीकृत किया जा सकता है। कल्पना करना रीमैन सतह पर 1-रूप है। यह होने देना किसी बिंदु पर मेरोमोर्फिक हो , जिससे हम लिख सकें, स्थानीय निर्देशांक में जैसे . तत्पश्चात, का अवशेष पर के अवशेष के रूप में परिभाषित किया गया है के अनुरूप बिंदु पर .
उदाहरण
एकपदी का अवशेष
एकपदी के अवशेष की गणना करना
अधिकांश अवशेषों की गणना करना सर बनाता है। चूँकि, पथ अभिन्न अभिकलन समरूपी अपरिवर्तनीय हैं, हम जाने देंगे त्रिज्या वाला वृत्त है, . तत्पश्चात, निर्देशांक के परिवर्तन का उपयोग करके हम उसे ढूंढते हैं।
इसलिए हमारा अभिन्न अंग अब इस प्रकार पढ़ता है
एकपदी अवशेषों का अनुप्रयोग
उदाहरण के तौर पर, समोच्च अभिन्न पर विचार करें:
जहाँ C 0 के बारे में कुछ सरल संवृत वक्र है।
आइए हम श्रृंखला द्वारा एकीकरण के बारे में मानक अभिसरण परिणाम का उपयोग करके इस अभिन्न का मूल्यांकन करें। हम टेलर श्रृंखला को स्थानापन्न कर सकते हैं। एकीकरण में तब अभिन्न हो जाता है।
आइए हम श्रृंखला में 1/z5 कारक लाएं, तत्पश्चात श्रृंखला का समोच्च अभिन्न अंग लिखता है।
चूंकि श्रृंखला एकीकरण पथ के समर्थन पर समान रूप से अभिसरण करती है, इसलिए हमें एकीकरण और सारांश का आदान-प्रदान करने की अनुमति है। पथ इंटीग्रल्स की श्रृंखला पूर्व गणना के कारण अत्यधिक सरल रूप में ढह जाती है। तो अब cz−1 के रूप में न होने वाले प्रत्येक अन्य पद C के चारों ओर का समाकलन शून्य है, और समाकलन को घटाकर कर दिया गया है।
मान 1/4! ez/z5 का अवशेष है, और इसे दर्शाया जाता है, z = 0 के लिए
अवशेषों की गणना
मान लीजिए कि छिद्रित डिस्क D = {z : 0 < |z − c| < R} जटिल तल में < R } दिया गया है, और f होलोमोर्फिक फलन है, जिसे D पर (कम से कम) परिभाषित किया गया है। c पर f का अवशेष Res(f, c) गुणांक a−1 है। c के निकट f का (z − c)−1 लॉरेंट श्रृंखला विस्तार है। इस मान की गणना के लिए विभिन्न विधियाँ उपस्थित हैं, और किस विधि का उपयोग करना है, यह प्रश्न में फलन और विलक्षणता की प्रकृति पर निर्भर करता है।
अवशेष प्रमेय के अनुसार, हमारे पास है:
जहां γ वामावर्त विधि से c के चारों ओर वृत्त की जानकारी ज्ञात करता है। हम पथ γ को c के चारों ओर त्रिज्या ε का वृत्त चयनित कर सकते हैं, जहां ε उतना अल्प है जितना हम चाहते हैं। इसका उपयोग उन स्थितियों में गणना के लिए किया जा सकता है, जहां अभिन्न की गणना सीधे की जा सकती है, किन्तु सामान्यतः ऐसा होता है कि अवशेषों का उपयोग अभिन्न की गणना को सरल बनाने के लिए किया जाता है, न कि दूसरे विधि से किया जाता है।
विस्थापित योग्य विलक्षणताएं
यदि फलन f संपूर्ण डिस्क पर होलोमोर्फिक फलन के लिए विश्लेषणात्मक निरंतरता हो सकता है, , तत्पश्चात Res(f, c) = 0 इसका विपरीत, सामान्यतः पर सत्य नहीं है।
सरल ध्रुव
साधारण ध्रुव c पर, f का अवशेष इस प्रकार दिया जाता है:
यदि वह सीमा उपस्थित नहीं है, तो वहां आवश्यक विलक्षणता है। यदि यह 0 है तो यह वहां या तो विश्लेषणात्मक है या विस्थापित करने योग्य विलक्षणता है। यदि यह अनंत के समान है तो क्रम 1 से अधिक है।
ऐसा हो सकता है कि फलन f को दो फलनों के भागफल के रूप में व्यक्त किया जा सके, , जहां g और h c के निकटतम (गणित) में होलोमोर्फिक फलन हैं। h(c) = 0 और h'(c) ≠ 0 के साथ ऐसी स्थिति में उपरोक्त सूत्र को सरल बनाने के लिए एल'हॉपिटल के नियम का उपयोग किया जा सकता है:
उच्च-क्रम वाले ध्रुवों के लिए सीमा सूत्र
अधिक सामान्यतः, यदि c क्रम n का ध्रुव (जटिल विश्लेषण) है, तो z = c के निकट f का अवशेष सूत्र द्वारा पाया जा सकता है:
निम्न-क्रम वाले ध्रुवों के लिए अवशेष निर्धारित करने में यह सूत्र अत्यधिक उपयोगी हो सकता है। उच्च-क्रम वाले ध्रुवों के लिए, गणनाएँ असहनीय हो सकती हैं, और श्रृंखला विस्तार सामान्यतः सर होता है। आवश्यक विलक्षणता के लिए, ऐसा कोई सरल सूत्र उपस्थित नहीं है, और अवशेषों को सामान्यतः श्रृंखला विस्तार से सीधे लिया जाना चाहिए।
अनंत पर अवशेष
सामान्यतः, अनंत पर अवशेष को इस प्रकार परिभाषित किया गया है:
यदि निम्नलिखित नियम पूर्ण होते है:
तो अनंत पर अवशेष की गणना निम्न सूत्र का उपयोग करके की जा सकती है:
यदि इसके अतिरिक्त
तो अनंत पर अवशेष है,
होलोमोर्फिक फलन के लिए पृथक विलक्षणताओं पर अवशेषों और अनंत पर अवशेषों का योग शून्य है।
श्रृंखला विधियाँ
यदि किसी फलन के भागो या सभी को टेलर श्रृंखला या लॉरेंट श्रृंखला में विस्तारित किया जा सकता है, जो संभव हो सकता है, यदि भागों या पूर्ण फलन में मानक श्रृंखला विस्तार हो, तो अवशेष की गणना करना अन्य विधियों की तुलना में अत्यधिक सरल है।
- As a first example, consider calculating the residues at the singularities of the function
which may be used to calculate certain contour integrals. This function appears to have a singularity at z = 0, but if one factorizes the denominator and thus writes the function as
it is apparent that the singularity at z = 0 is a removable singularity and then the residue at z = 0 is therefore 0.
The only other singularity is at z = 1. Recall the expression for the Taylor series for a function g(z) about z = a:
So, for g(z) = sin z and a = 1 we have
and for g(z) = 1/z and a = 1 we haveMultiplying those two series and introducing 1/(z − 1) gives us
So the residue of f(z) at z = 1 is sin 1. - The next example shows that, computing a residue by series expansion, a major role is played by the Lagrange inversion theorem. Let
be an entire function, and letwith positive radius of convergence, and with . So has a local inverse at 0, and is meromorphic at 0. Then we have:Indeed,because the first series converges uniformly on any small circle around 0. Using the Lagrange inversion theoremand we get the above expression. For example, if and also , thenandThe first term contributes 1 to the residue, and the second term contributes 2 since it is asymptotic to . Note that, with the corresponding stronger symmetric assumptions on and , it also followswhere is a local inverse of at 0.
यह भी देखें
- अवशेष प्रमेय किसी फलन के कुछ ध्रुवों के चारों ओर समोच्च अभिन्न अंग को उनके अवशेषों के योग से जोड़ता है
- कॉची का अभिन्न सूत्र
- कॉची का अभिन्न प्रमेय
- मित्तग-लेफ़लर का प्रमेय
- समोच्च एकीकरण के विधि
- मोरेरा का प्रमेय
- जटिल विश्लेषण में आंशिक अंश
संदर्भ
- Ahlfors, Lars (1979). Complex Analysis. McGraw Hill.
- Marsden, Jerrold E.; Hoffman, Michael J. (1998). Basic Complex Analysis (3rd ed.). W. H. Freeman. ISBN 978-0-7167-2877-1.