समीकरणों का आकलन: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 46: | Line 46: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 06/07/2023]] | [[Category:Created On 06/07/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 10:55, 25 July 2023
सांख्यिकी में समीकरणों का अनुमान लगाने की विधि यह निर्दिष्ट करने का एक विधि है कि सांख्यिकीय मॉडल के मापदंडों का अनुमान कैसे लगाया जाना चाहिए। इसे कई मौलिक विधियों के सामान्यीकरण के रूप में सोचा जा सकता है - क्षणों की विधि (सांख्यिकी), न्यूनतम वर्ग, और अधिकतम संभावना - साथ ही एम-आकलनकर्ता जैसी कुछ आधुनिक विधियां है।
विधि का आधार नमूना डेटा और अज्ञात मॉडल पैरामीटर दोनों को सम्मिलित करने वाले एक साथ समीकरणों का एक सेट रखना या खोजना है, जिन्हें पैरामीटर के अनुमान को परिभाषित करने के लिए हल किया जाना है।[1] समीकरणों के विभिन्न घटकों को प्रेक्षित डेटा के सेट के संदर्भ में परिभाषित किया गया है, जिस पर अनुमान आधारित होने हैं।
समीकरणों के आकलन के महत्वपूर्ण उदाहरण संभावना समीकरण हैं।
उदाहरण
घातीय वितरण के दर पैरामीटर, λ का अनुमान लगाने की समस्या पर विचार करें जिसमें संभाव्यता घनत्व फलन है:
मान लीजिए कि डेटा का एक नमूना उपलब्ध है, जिससे या तो नमूना माध्य, या नमूना माध्यिका, मी, की गणना की जा सकती है। फिर माध्य पर आधारित एक आकलन समीकरण है
जबकि माध्यिका पर आधारित आकलन समीकरण है
इनमें से प्रत्येक समीकरण एक नमूना मूल्य (नमूना आँकड़ा) को एक सैद्धांतिक (जनसंख्या) मूल्य के समान करके प्राप्त किया जाता है। प्रत्येक स्थिति में नमूना आँकड़ा जनसंख्या मूल्य का एक सुसंगत अनुमानक है, और यह अनुमान के लिए इस प्रकार के दृष्टिकोण के लिए एक सहज औचित्य प्रदान करता है।
यह भी देखें
- सामान्यीकृत आकलन समीकरण
- क्षणों की विधि (सांख्यिकी)
- क्षणों की सामान्यीकृत विधि
- अधिकतम संभाव्यता
संदर्भ
- ↑ Dodge, Y. (2003). सांख्यिकीय शर्तों का ऑक्सफोर्ड डिक्शनरी. OUP. ISBN 0-19-920613-9.
- Godambe, V. P., ed. (1991). Estimating Functions. New York: Oxford University Press. ISBN 0-19-852228-2.
- Heyde, Christopher C. (1997). Quasi-Likelihood and Its Application: A General Approach to Optimal Parameter Estimation. New York: Springer-Verlag. ISBN 0-387-98225-6.
- McLeish, D. L.; Small, Christopher G. (1988). The Theory and Applications of Statistical Inference Functions. New York: Springer-Verlag. ISBN 0-387-96720-6.
- Small, Christopher G.; Wang, Jinfang (2003). Numerical Methods for Nonlinear Estimating Equations. New York: Oxford University Press. ISBN 0-19-850688-0.