बोल्ट्ज़मान वितरण: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
[[File:Exponential probability density.svg|upright=1.75|right|thumb|बोल्ट्ज़मैन का वितरण घातांकीय वितरण है।]] | [[File:Exponential probability density.svg|upright=1.75|right|thumb|बोल्ट्ज़मैन का वितरण घातांकीय वितरण है।]] | ||
[[File:Boltzmann distribution graph.svg|upright=1.75|right|thumb|बोल्ट्ज़मान कारक {{tmath|\tfrac{p_i}{p_j} }} (ऊर्ध्वाधर अक्ष) तापमान के फलन के रूप में {{mvar|T}} कई ऊर्जा अंतरों के लिए {{math|''ε<sub>i</sub>'' − ''ε<sub>j</sub>''}}.]][[सांख्यिकीय यांत्रिकी]] और गणित में, बोल्ट्ज़मैन वितरण (जिसे गिब्स वितरण भी कहा जाता है<ref name ="landau">{{cite book | author=Landau, Lev Davidovich |author2=Lifshitz, Evgeny Mikhailovich |name-list-style=amp | title=सांख्यिकीय भौतिकी|volume=5 |series=Course of Theoretical Physics |edition=3 |orig-year=1976 |year=1980 |place=Oxford |publisher=Pergamon Press|isbn=0-7506-3372-7|author-link=Lev Landau |author2-link=Evgeny Lifshitz }} Translated by J.B. Sykes and M.J. Kearsley. See section 28</ref>) संभाव्यता वितरण या [[संभाव्यता माप]] है जो यह संभावना देता है कि प्रणाली उस राज्य की ऊर्जा और प्रणाली के तापमान के आधार पर निश्चित [[माइक्रोस्टेट (सांख्यिकीय यांत्रिकी)]] में होगा। वितरण इस प्रकार व्यक्त किया गया है: | [[File:Boltzmann distribution graph.svg|upright=1.75|right|thumb|बोल्ट्ज़मान कारक {{tmath|\tfrac{p_i}{p_j} }} (ऊर्ध्वाधर अक्ष) तापमान के फलन के रूप में {{mvar|T}} कई ऊर्जा अंतरों के लिए {{math|''ε<sub>i</sub>'' − ''ε<sub>j</sub>''}}.]][[सांख्यिकीय यांत्रिकी]] और गणित में, '''बोल्ट्ज़मैन वितरण''' (जिसे गिब्स वितरण भी कहा जाता है<ref name ="landau">{{cite book | author=Landau, Lev Davidovich |author2=Lifshitz, Evgeny Mikhailovich |name-list-style=amp | title=सांख्यिकीय भौतिकी|volume=5 |series=Course of Theoretical Physics |edition=3 |orig-year=1976 |year=1980 |place=Oxford |publisher=Pergamon Press|isbn=0-7506-3372-7|author-link=Lev Landau |author2-link=Evgeny Lifshitz }} Translated by J.B. Sykes and M.J. Kearsley. See section 28</ref>) संभाव्यता वितरण या [[संभाव्यता माप]] है, जो यह संभावना देता है कि प्रणाली उस राज्य की ऊर्जा और प्रणाली के तापमान के आधार पर निश्चित [[माइक्रोस्टेट (सांख्यिकीय यांत्रिकी)]] में होगा। वितरण इस प्रकार व्यक्त किया गया है: | ||
:<math>p_i \propto \exp\left(- \frac{\varepsilon_i}{kT} \right)</math> | :<math>p_i \propto \exp\left(- \frac{\varepsilon_i}{kT} \right)</math> | ||
कहाँ {{mvar|p<sub>i</sub>}} प्रणाली के स्थिति में होने की संभावना है {{mvar|i}}, {{math|exp}} घातीय फलन है, {{mvar|ε<sub>i</sub>}} उस अवस्था की ऊर्जा है, और स्थिरांक है {{mvar|kT}} वितरण बोल्ट्ज़मैन स्थिरांक का उत्पाद है {{mvar|k}} और [[थर्मोडायनामिक तापमान]] {{mvar|T}}. प्रतीक <math display="inline">\propto</math> [[आनुपातिकता (गणित)]] को दर्शाता है (देखें {{section link||डिस्ट्रीब्यूशन }} आनुपातिकता स्थिरांक के लिए)। | कहाँ {{mvar|p<sub>i</sub>}} प्रणाली के स्थिति में होने की संभावना है {{mvar|i}}, {{math|exp}} घातीय फलन है, {{mvar|ε<sub>i</sub>}} उस अवस्था की ऊर्जा है, और स्थिरांक है {{mvar|kT}} वितरण बोल्ट्ज़मैन स्थिरांक का उत्पाद है {{mvar|k}} और [[थर्मोडायनामिक तापमान]] {{mvar|T}}. प्रतीक <math display="inline">\propto</math> [[आनुपातिकता (गणित)]] को दर्शाता है (देखें {{section link||डिस्ट्रीब्यूशन }} आनुपातिकता स्थिरांक के लिए)। | ||
यहाँ प्रणाली शब्द का व्यापक अर्थ है; यह परमाणुओं की 'पर्याप्त संख्या' के संग्रह या एकल परमाणु तक हो सकता है{{r|landau}} [[प्राकृतिक गैस भंडारण]] जैसी स्थूल प्रणाली के लिए। इसलिए बोल्ट्ज़मैन वितरण का उपयोग विभिन्न प्रकार की समस्याओं को हल करने के लिए किया जा सकता है। वितरण से पता चलता है कि कम ऊर्जा वाले | यहाँ प्रणाली शब्द का व्यापक अर्थ है; यह परमाणुओं की 'पर्याप्त संख्या' के संग्रह या एकल परमाणु तक हो सकता है{{r|landau}} [[प्राकृतिक गैस भंडारण]] जैसी स्थूल प्रणाली के लिए। इसलिए बोल्ट्ज़मैन वितरण का उपयोग विभिन्न प्रकार की समस्याओं को हल करने के लिए किया जा सकता है। वितरण से पता चलता है कि कम ऊर्जा वाले स्थितियों में हमेशा कब्ज़ा होने की संभावना अधिक होगी। | ||
दो | दो स्थितियों की संभावनाओं के अनुपात को 'बोल्ट्ज़मैन कारक' के रूप में जाना जाता है और यह विशेष रूप से केवल स्थितियों के ऊर्जा अंतर पर निर्भर करता है: | ||
:<math>\frac{p_i}{p_j} = \exp\left( \frac{\varepsilon_j - \varepsilon_i}{kT} \right)</math> | :<math>\frac{p_i}{p_j} = \exp\left( \frac{\varepsilon_j - \varepsilon_i}{kT} \right)</math> | ||
बोल्ट्ज़मैन वितरण का नाम [[लुडविग बोल्ट्ज़मान]] के नाम पर रखा गया है, जिन्होंने पहली बार 1868 में [[थर्मल संतुलन]] में गैसों के सांख्यिकीय यांत्रिकी के अध्ययन के | बोल्ट्ज़मैन वितरण का नाम [[लुडविग बोल्ट्ज़मान]] के नाम पर रखा गया है, जिन्होंने पहली बार 1868 में [[थर्मल संतुलन]] में गैसों के सांख्यिकीय यांत्रिकी के अध्ययन के समय इसे तैयार किया था।<ref>{{cite journal |last=Boltzmann |first=Ludwig |author-link=Ludwig Boltzmann | ||
|year=1868 | |year=1868 | ||
|title=Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten materiellen Punkten | |title=Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten materiellen Punkten | ||
Line 21: | Line 21: | ||
वितरण की बाद में 1902 में [[जोशिया विलार्ड गिब्स]] द्वारा आधुनिक सामान्य रूप में बड़े पैमाने पर जांच की गई।<ref name="gibbs">{{cite book |last=Gibbs |first=Josiah Willard |author-link=Josiah Willard Gibbs |title=सांख्यिकीय यांत्रिकी में प्राथमिक सिद्धांत|year=1902 |publisher=[[Charles Scribner's Sons]] | वितरण की बाद में 1902 में [[जोशिया विलार्ड गिब्स]] द्वारा आधुनिक सामान्य रूप में बड़े पैमाने पर जांच की गई।<ref name="gibbs">{{cite book |last=Gibbs |first=Josiah Willard |author-link=Josiah Willard Gibbs |title=सांख्यिकीय यांत्रिकी में प्राथमिक सिद्धांत|year=1902 |publisher=[[Charles Scribner's Sons]] | ||
|location=New York|title-link=सांख्यिकीय यांत्रिकी में प्राथमिक सिद्धांत}}</ref> | |location=New York|title-link=सांख्यिकीय यांत्रिकी में प्राथमिक सिद्धांत}}</ref> | ||
बोल्ट्ज़मैन वितरण को मैक्सवेल-बोल्ट्ज़मैन वितरण या मैक्सवेल-बोल्ट्ज़मैन सांख्यिकी | बोल्ट्ज़मैन वितरण को मैक्सवेल-बोल्ट्ज़मैन वितरण या मैक्सवेल-बोल्ट्ज़मैन सांख्यिकी मैक्सवेल-बोल्ट्ज़मैन सांख्यिकी के साथ भ्रमित नहीं किया जाना चाहिए। बोल्ट्ज़मैन वितरण यह संभावना देता है कि प्रणाली उस राज्य की ऊर्जा के फलन के रूप में निश्चित स्थिति में होगी,<ref name="Atkins, P. W. 2010">Atkins, P. W. (2010) Quanta, W. H. Freeman and Company, New York</ref> जबकि मैक्सवेल-बोल्ट्ज़मैन वितरण आदर्श गैसों में कण गति या ऊर्जा की संभावनाएं देते हैं। चूँकि , <em>एक-आयामी</em> गैस में ऊर्जा का वितरण बोल्ट्ज़मैन वितरण का पालन करता है। | ||
==वितरण== | ==वितरण== | ||
Line 35: | Line 35: | ||
*{{mvar|k}} बोल्ट्ज़मैन स्थिरांक है, | *{{mvar|k}} बोल्ट्ज़मैन स्थिरांक है, | ||
*{{mvar|T}} प्रणाली का पूर्ण तापमान है, | *{{mvar|T}} प्रणाली का पूर्ण तापमान है, | ||
*{{mvar|M}} ब्याज की प्रणाली के लिए सुलभ सभी | *{{mvar|M}} ब्याज की प्रणाली के लिए सुलभ सभी स्थितियों की संख्या है,<ref name="McQuarrie, A. 2000"/><ref name="Atkins, P. W. 2010"/> | ||
*{{mvar|Q}} (कुछ लेखकों द्वारा इसे दर्शाया गया है {{mvar|Z}}) सामान्यीकरण विभाजक है, जो [[विहित विभाजन फ़ंक्शन]] है<math display=block> | *{{mvar|Q}} (कुछ लेखकों द्वारा इसे दर्शाया गया है {{mvar|Z}}) सामान्यीकरण विभाजक है, जो [[विहित विभाजन फ़ंक्शन]] है<math display=block> | ||
Q = \sum_{j=1}^{M} \exp\left(- \tfrac{\varepsilon_j}{kT} \right) | Q = \sum_{j=1}^{M} \exp\left(- \tfrac{\varepsilon_j}{kT} \right) | ||
</math> यह इस बाधा का परिणाम है कि सभी सुलभ | </math> यह इस बाधा का परिणाम है कि सभी सुलभ स्थितियों की संभावनाओं को 1 तक जोड़ना होगा। | ||
बोल्ट्ज़मैन वितरण वह वितरण है जो [[एन्ट्रापी]] को अधिकतम करता है | बोल्ट्ज़मैन वितरण वह वितरण है जो [[एन्ट्रापी]] को अधिकतम करता है | ||
Line 44: | Line 44: | ||
सामान्यीकरण बाधा और उस बाधा के अधीन <math display="inline">\sum {p_i {\varepsilon}_i}</math> विशेष माध्य ऊर्जा मान के बराबर होता है (जिसे [[लैग्रेंज गुणक]] का उपयोग करके सिद्ध किया जा सकता है)। | सामान्यीकरण बाधा और उस बाधा के अधीन <math display="inline">\sum {p_i {\varepsilon}_i}</math> विशेष माध्य ऊर्जा मान के बराबर होता है (जिसे [[लैग्रेंज गुणक]] का उपयोग करके सिद्ध किया जा सकता है)। | ||
यदि हम ब्याज की प्रणाली के लिए सुलभ | यदि हम ब्याज की प्रणाली के लिए सुलभ स्थितियों की ऊर्जा को जानते हैं तो विभाजन फ़ंक्शन की गणना की जा सकती है। परमाणुओं के लिए विभाजन फ़ंक्शन मान राष्ट्रीय मानक और प्रौद्योगिकी संस्थान परमाणु स्पेक्ट्रा डेटाबेस में पाया जा सकता है।<ref>[http://physics.nist.gov/PhysRefData/ASD/levels_form.html NIST Atomic Spectra Database Levels Form] at nist.gov</ref> | ||
वितरण से पता चलता है कि कम ऊर्जा वाले | वितरण से पता चलता है कि कम ऊर्जा वाले स्थितियों में हमेशा उच्च ऊर्जा वाले स्थितियों की समानता में कब्ज़ा होने की संभावना अधिक होगी। यह हमें दोनों स्थितियों के कब्जे की संभावनाओं के बीच मात्रात्मक संबंध भी दे सकता है। स्थितियों के लिए संभावनाओं का अनुपात {{mvar|i}} और {{mvar|j}} के रूप में दिया गया है | ||
<math display="block">\frac{p_i}{p_j} = \exp\left( \frac{\varepsilon_j - \varepsilon_i}{kT} \right)</math> | <math display="block">\frac{p_i}{p_j} = \exp\left( \frac{\varepsilon_j - \varepsilon_i}{kT} \right)</math> | ||
कहाँ: | कहाँ: | ||
Line 56: | Line 56: | ||
ऊर्जा स्तरों की आबादी के संगत अनुपात को उनकी [[अध:पतन (क्वांटम यांत्रिकी)]] को भी ध्यान में रखना चाहिए। | ऊर्जा स्तरों की आबादी के संगत अनुपात को उनकी [[अध:पतन (क्वांटम यांत्रिकी)]] को भी ध्यान में रखना चाहिए। | ||
बोल्ट्ज़मैन वितरण का उपयोग | बोल्ट्ज़मैन वितरण का उपयोग अधिकांशतः कणों के वितरण का वर्णन करने के लिए किया जाता है, जैसे कि परमाणु या अणु, उनके लिए सुलभ सीमाओं से परे। यदि हमारे पास कई कणों से युक्त प्रणाली है, तो कण की स्थिति में होने की संभावना है {{mvar|i}} व्यावहारिक रूप से संभावना यह है कि, यदि हम उस प्रणाली से यादृच्छिक कण चुनते हैं और जांचते हैं कि यह किस स्थिति में है, तो हम पाएंगे कि यह किस स्थिति में है {{mvar|i}}. यह संभावना राज्य में कणों की संख्या के बराबर है {{mvar|i}} प्रणाली में कणों की कुल संख्या से विभाजित, वह कणों का अंश है जो स्थिति पर कब्जा कर लेता है {{mvar|i}}. | ||
:<math>p_i = \frac{N_i}{N}</math> | :<math>p_i = \frac{N_i}{N}</math> | ||
Line 63: | Line 63: | ||
\frac{N_i}{N} = \frac{ \exp\left(- \frac{\varepsilon_i}{kT} \right) }{ \displaystyle \sum_{j=1}^{M} \exp\left(- \tfrac{\varepsilon_j}{kT} \right) } | \frac{N_i}{N} = \frac{ \exp\left(- \frac{\varepsilon_i}{kT} \right) }{ \displaystyle \sum_{j=1}^{M} \exp\left(- \tfrac{\varepsilon_j}{kT} \right) } | ||
</math> | </math> | ||
यह समीकरण [[स्पेक्ट्रोस्कोपी]] के लिए बहुत महत्वपूर्ण है। स्पेक्ट्रोस्कोपी में हम परमाणुओं या अणुओं की [[वर्णक्रमीय रेखा]] को अवस्था से दूसरी अवस्था में संक्रमण से गुजरते हुए देखते हैं।<ref name="Atkins, P. W. 2010"/><ref>{{cite book |last1=Atkins |first1=P. W. |last2=de Paula |first2=J. |year=2009 |title=भौतिक रसायन|edition=9th |publisher=Oxford University Press |location=Oxford |isbn=978-0-19-954337-3 }}</ref> ऐसा संभव होने के लिए, संक्रमण से गुजरने के लिए पहली अवस्था में कुछ कण होने चाहिए। हम पा सकते हैं कि पहली अवस्था में कणों का अंश ज्ञात करने से यह शर्त पूरी हो जाती है। यदि यह नगण्य है, तो जिस तापमान के लिए गणना की गई थी, उस पर संक्रमण बहुत संभव नहीं है। सामान्यतः , पहली अवस्था में अणुओं के बड़े अंश का | यह समीकरण [[स्पेक्ट्रोस्कोपी]] के लिए बहुत महत्वपूर्ण है। स्पेक्ट्रोस्कोपी में हम परमाणुओं या अणुओं की [[वर्णक्रमीय रेखा]] को अवस्था से दूसरी अवस्था में संक्रमण से गुजरते हुए देखते हैं।<ref name="Atkins, P. W. 2010"/><ref>{{cite book |last1=Atkins |first1=P. W. |last2=de Paula |first2=J. |year=2009 |title=भौतिक रसायन|edition=9th |publisher=Oxford University Press |location=Oxford |isbn=978-0-19-954337-3 }}</ref> ऐसा संभव होने के लिए, संक्रमण से गुजरने के लिए पहली अवस्था में कुछ कण होने चाहिए। हम पा सकते हैं कि पहली अवस्था में कणों का अंश ज्ञात करने से यह शर्त पूरी हो जाती है। यदि यह नगण्य है, तो जिस तापमान के लिए गणना की गई थी, उस पर संक्रमण बहुत संभव नहीं है। सामान्यतः , पहली अवस्था में अणुओं के बड़े अंश का तात्पर्य दूसरी अवस्था में अधिक संख्या में संक्रमण होता है।<ref>{{cite book |last1=Skoog |first1=D. A. |last2=Holler |first2=F. J. |last3=Crouch |first3=S. R. |year=2006 |title=वाद्य विश्लेषण के सिद्धांत|publisher=Brooks/Cole |location=Boston, MA |isbn=978-0-495-12570-9 }}</ref> इससे मजबूत वर्णक्रमीय रेखा प्राप्त होती है। चूँकि , ऐसे अन्य कारक भी हैं जो वर्णक्रमीय रेखा की तीव्रता को प्रभावित करते हैं, जैसे कि क्या यह किसी स्वीकृत या [[निषिद्ध संक्रमण]] के कारण होता है। | ||
मशीन लर्निंग में सामान्यतः उपयोग किया जाने वाला [[सॉफ्टमैक्स फ़ंक्शन]] बोल्ट्ज़मैन वितरण से संबंधित है: | मशीन लर्निंग में सामान्यतः उपयोग किया जाने वाला [[सॉफ्टमैक्स फ़ंक्शन]] बोल्ट्ज़मैन वितरण से संबंधित है: | ||
Line 87: | Line 87: | ||
{{main|कैनोनिकल एन्सेम्बल |मैक्सवेल-बोल्ट्ज़मैन आँकड़े}} | {{main|कैनोनिकल एन्सेम्बल |मैक्सवेल-बोल्ट्ज़मैन आँकड़े}} | ||
बोल्ट्ज़मैन वितरण सांख्यिकीय यांत्रिकी में तब प्रकट होता है जब निश्चित संरचना की बंद प्रणालियों पर विचार किया जाता है जो थर्मल संतुलन (ऊर्जा विनिमय के संबंध में संतुलन) में होती हैं। सबसे सामान्य स्थिति विहित समूह के लिए संभाव्यता वितरण है। कुछ विशेष | बोल्ट्ज़मैन वितरण सांख्यिकीय यांत्रिकी में तब प्रकट होता है जब निश्चित संरचना की बंद प्रणालियों पर विचार किया जाता है जो थर्मल संतुलन (ऊर्जा विनिमय के संबंध में संतुलन) में होती हैं। सबसे सामान्य स्थिति विहित समूह के लिए संभाव्यता वितरण है। कुछ विशेष स्थिति (विहित समूह से व्युत्पन्न) विभिन्न पहलुओं में बोल्ट्ज़मैन वितरण दिखाते हैं: | ||
; विहित पहनावा (सामान्य स्थिति ) | ; विहित पहनावा (सामान्य स्थिति ) | ||
: विहित पहनावा ऊष्मा स्नान के साथ तापीय संतुलन में, निश्चित आयतन की बंद प्रणाली की विभिन्न संभावित स्थितियों की संभावनाएँ देता है। विहित समूह में बोल्ट्ज़मैन फॉर्म के साथ राज्य संभाव्यता वितरण होता है। | : विहित पहनावा ऊष्मा स्नान के साथ तापीय संतुलन में, निश्चित आयतन की बंद प्रणाली की विभिन्न संभावित स्थितियों की संभावनाएँ देता है। विहित समूह में बोल्ट्ज़मैन फॉर्म के साथ राज्य संभाव्यता वितरण होता है। | ||
; उपप्रणालियों की स्थिति की [[सांख्यिकीय आवृत्ति]]याँ (गैर-अंतःक्रियात्मक संग्रह में) | ; उपप्रणालियों की स्थिति की [[सांख्यिकीय आवृत्ति]]याँ (गैर-अंतःक्रियात्मक संग्रह में) | ||
: जब रुचि की प्रणाली छोटे उपप्रणाली की कई गैर-अंतःक्रियात्मक प्रतियों का संग्रह होती है, तो संग्रह के बीच किसी दिए गए उपप्रणाली स्थिति की सांख्यिकीय आवृत्ति का पता लगाना कभी-कभी उपयोगी होता है। ऐसे संग्रह पर लागू होने पर विहित समुच्चय में पृथक्करण की संपत्ति होती है: जब तक गैर-अंतःक्रियात्मक उपप्रणालियों की संरचना निश्चित होती है, तब तक प्रत्येक उपप्रणाली की स्थिति दूसरों से स्वतंत्र होती है और विहित समुच्चय की विशेषता भी होती है। परिणामस्वरूप, उपप्रणाली | : जब रुचि की प्रणाली छोटे उपप्रणाली की कई गैर-अंतःक्रियात्मक प्रतियों का संग्रह होती है, तो संग्रह के बीच किसी दिए गए उपप्रणाली स्थिति की सांख्यिकीय आवृत्ति का पता लगाना कभी-कभी उपयोगी होता है। ऐसे संग्रह पर लागू होने पर विहित समुच्चय में पृथक्करण की संपत्ति होती है: जब तक गैर-अंतःक्रियात्मक उपप्रणालियों की संरचना निश्चित होती है, तब तक प्रत्येक उपप्रणाली की स्थिति दूसरों से स्वतंत्र होती है और विहित समुच्चय की विशेषता भी होती है। परिणामस्वरूप, उपप्रणाली स्थितियों के अपेक्षित मूल्य सांख्यिकीय आवृत्ति वितरण में बोल्ट्ज़मैन रूप होता है। | ||
; शास्त्रीय गैसों के मैक्सवेल-बोल्ट्ज़मैन आँकड़े (गैर-अंतःक्रियात्मक कणों की प्रणाली) | ; शास्त्रीय गैसों के मैक्सवेल-बोल्ट्ज़मैन आँकड़े (गैर-अंतःक्रियात्मक कणों की प्रणाली) | ||
: कण प्रणालियों में, कई कण ही स्थान साझा करते हैं और नियमित रूप से दूसरे के साथ स्थान बदलते हैं; वे जिस एकल-कण अवस्था स्थान पर कब्जा करते हैं वह साझा स्थान है। मैक्सवेल-बोल्ट्ज़मैन आँकड़े संतुलन में गैर-अंतःक्रियात्मक कणों की [[शास्त्रीय यांत्रिकी]] गैस में दिए गए एकल-कण अवस्था में पाए जाने वाले कणों की अपेक्षित संख्या देते हैं। इस अपेक्षित संख्या वितरण में बोल्ट्ज़मैन फॉर्म है। | : कण प्रणालियों में, कई कण ही स्थान साझा करते हैं और नियमित रूप से दूसरे के साथ स्थान बदलते हैं; वे जिस एकल-कण अवस्था स्थान पर कब्जा करते हैं वह साझा स्थान है। मैक्सवेल-बोल्ट्ज़मैन आँकड़े संतुलन में गैर-अंतःक्रियात्मक कणों की [[शास्त्रीय यांत्रिकी]] गैस में दिए गए एकल-कण अवस्था में पाए जाने वाले कणों की अपेक्षित संख्या देते हैं। इस अपेक्षित संख्या वितरण में बोल्ट्ज़मैन फॉर्म है। | ||
चूँकि इन स्थितियों में मजबूत समानताएँ हैं, किन्तु इन्हें अलग करना मददगार है क्योंकि जब महत्वपूर्ण धारणाएँ बदल जाती हैं तो वे अलग-अलग | चूँकि इन स्थितियों में मजबूत समानताएँ हैं, किन्तु इन्हें अलग करना मददगार है क्योंकि जब महत्वपूर्ण धारणाएँ बदल जाती हैं तो वे अलग-अलग विधियों से सामान्यीकरण करते हैं: | ||
* जब कोई प्रणाली ऊर्जा विनिमय और कण विनिमय दोनों के संबंध में थर्मोडायनामिक संतुलन में होती है, तो निश्चित संरचना की आवश्यकता में छूट दी जाती है और विहित पहनावा के अतिरिक्त भव्य विहित पहनावा प्राप्त होता है। दूसरी ओर, यदि संरचना और ऊर्जा दोनों निश्चित हैं, तो इसके स्थान पर [[माइक्रोकैनोनिकल पहनावा]] लागू होता है। | * जब कोई प्रणाली ऊर्जा विनिमय और कण विनिमय दोनों के संबंध में थर्मोडायनामिक संतुलन में होती है, तो निश्चित संरचना की आवश्यकता में छूट दी जाती है और विहित पहनावा के अतिरिक्त भव्य विहित पहनावा प्राप्त होता है। दूसरी ओर, यदि संरचना और ऊर्जा दोनों निश्चित हैं, तो इसके स्थान पर [[माइक्रोकैनोनिकल पहनावा]] लागू होता है। | ||
* यदि किसी संग्रह के भीतर उपप्रणालियाँ एक-दूसरे के साथ परस्पर क्रिया करती हैं, तो उपप्रणाली | * यदि किसी संग्रह के भीतर उपप्रणालियाँ एक-दूसरे के साथ परस्पर क्रिया करती हैं, तो उपप्रणाली स्थितियों की अपेक्षित आवृत्तियाँ अब बोल्ट्ज़मान वितरण का पालन नहीं करती हैं, और यहां तक कि उनका कोई [[विश्लेषणात्मक समाधान]] भी नहीं हो सकता है।<ref>A classic example of this is [[magnetic ordering]]. Systems of non-interacting [[Spin (physics)|spins]] show [[paramagnetic]] behaviour that can be understood with a single-particle canonical ensemble (resulting in the [[Brillouin function]]). Systems of ''interacting'' spins can show much more complex behaviour such as [[ferromagnetism]] or [[antiferromagnetism]].</ref> चूँकि , विहित पहनावा अभी भी पूरे प्रणाली की सामूहिक अवस्थाओं पर लागू किया जा सकता है, बशर्ते कि पूरा प्रणाली थर्मल संतुलन में हो। | ||
* संतुलन में गैर-अंतःक्रियात्मक कणों की [[क्वांटम यांत्रिकी]] गैसों के साथ, किसी दिए गए एकल-कण अवस्था में पाए जाने वाले कणों की संख्या मैक्सवेल-बोल्ट्ज़मैन आंकड़ों का पालन नहीं करती है, और विहित समूह में क्वांटम गैसों के लिए कोई सरल बंद रूप अभिव्यक्ति नहीं है। भव्य विहित समूह में क्वांटम गैसों के राज्य-भरण आँकड़ों का वर्णन फर्मी-डिराक आँकड़ों या बोस-आइंस्टीन आँकड़ों द्वारा किया जाता है, जो इस बात पर निर्भर करता है कि कण क्रमशः [[फर्मियन]] या [[बोसॉन]] हैं। | * संतुलन में गैर-अंतःक्रियात्मक कणों की [[क्वांटम यांत्रिकी]] गैसों के साथ, किसी दिए गए एकल-कण अवस्था में पाए जाने वाले कणों की संख्या मैक्सवेल-बोल्ट्ज़मैन आंकड़ों का पालन नहीं करती है, और विहित समूह में क्वांटम गैसों के लिए कोई सरल बंद रूप अभिव्यक्ति नहीं है। भव्य विहित समूह में क्वांटम गैसों के राज्य-भरण आँकड़ों का वर्णन फर्मी-डिराक आँकड़ों या बोस-आइंस्टीन आँकड़ों द्वारा किया जाता है, जो इस बात पर निर्भर करता है कि कण क्रमशः [[फर्मियन]] या [[बोसॉन]] हैं। | ||
Revision as of 00:14, 18 July 2023
सांख्यिकीय यांत्रिकी और गणित में, बोल्ट्ज़मैन वितरण (जिसे गिब्स वितरण भी कहा जाता है[1]) संभाव्यता वितरण या संभाव्यता माप है, जो यह संभावना देता है कि प्रणाली उस राज्य की ऊर्जा और प्रणाली के तापमान के आधार पर निश्चित माइक्रोस्टेट (सांख्यिकीय यांत्रिकी) में होगा। वितरण इस प्रकार व्यक्त किया गया है:
कहाँ pi प्रणाली के स्थिति में होने की संभावना है i, exp घातीय फलन है, εi उस अवस्था की ऊर्जा है, और स्थिरांक है kT वितरण बोल्ट्ज़मैन स्थिरांक का उत्पाद है k और थर्मोडायनामिक तापमान T. प्रतीक आनुपातिकता (गणित) को दर्शाता है (देखें § डिस्ट्रीब्यूशन आनुपातिकता स्थिरांक के लिए)।
यहाँ प्रणाली शब्द का व्यापक अर्थ है; यह परमाणुओं की 'पर्याप्त संख्या' के संग्रह या एकल परमाणु तक हो सकता है[1] प्राकृतिक गैस भंडारण जैसी स्थूल प्रणाली के लिए। इसलिए बोल्ट्ज़मैन वितरण का उपयोग विभिन्न प्रकार की समस्याओं को हल करने के लिए किया जा सकता है। वितरण से पता चलता है कि कम ऊर्जा वाले स्थितियों में हमेशा कब्ज़ा होने की संभावना अधिक होगी।
दो स्थितियों की संभावनाओं के अनुपात को 'बोल्ट्ज़मैन कारक' के रूप में जाना जाता है और यह विशेष रूप से केवल स्थितियों के ऊर्जा अंतर पर निर्भर करता है:
बोल्ट्ज़मैन वितरण का नाम लुडविग बोल्ट्ज़मान के नाम पर रखा गया है, जिन्होंने पहली बार 1868 में थर्मल संतुलन में गैसों के सांख्यिकीय यांत्रिकी के अध्ययन के समय इसे तैयार किया था।[2] बोल्ट्ज़मैन का सांख्यिकीय कार्य उनके पेपर "थर्मल इक्विलिब्रियम के लिए शर्तों के संबंध में गर्मी के यांत्रिक सिद्धांत के दूसरे मौलिक प्रमेय और संभाव्यता गणना के बीच संबंध पर" में सामने आया है।[3]
वितरण की बाद में 1902 में जोशिया विलार्ड गिब्स द्वारा आधुनिक सामान्य रूप में बड़े पैमाने पर जांच की गई।[4]
बोल्ट्ज़मैन वितरण को मैक्सवेल-बोल्ट्ज़मैन वितरण या मैक्सवेल-बोल्ट्ज़मैन सांख्यिकी मैक्सवेल-बोल्ट्ज़मैन सांख्यिकी के साथ भ्रमित नहीं किया जाना चाहिए। बोल्ट्ज़मैन वितरण यह संभावना देता है कि प्रणाली उस राज्य की ऊर्जा के फलन के रूप में निश्चित स्थिति में होगी,[5] जबकि मैक्सवेल-बोल्ट्ज़मैन वितरण आदर्श गैसों में कण गति या ऊर्जा की संभावनाएं देते हैं। चूँकि , एक-आयामी गैस में ऊर्जा का वितरण बोल्ट्ज़मैन वितरण का पालन करता है।
वितरण
बोल्ट्ज़मैन वितरण संभाव्यता वितरण है जो उस राज्य की ऊर्जा और उस प्रणाली के तापमान के फ़ंक्शन के रूप में निश्चित स्थिति की संभावना देता है जिस पर वितरण लागू होता है।[6] इसे इस प्रकार दिया गया है
- exp() घातीय फलन है,
- pi राज्य की संभावना है i,
- εi राज्य की ऊर्जा है i,
- k बोल्ट्ज़मैन स्थिरांक है,
- T प्रणाली का पूर्ण तापमान है,
- M ब्याज की प्रणाली के लिए सुलभ सभी स्थितियों की संख्या है,[6][5]
- Q (कुछ लेखकों द्वारा इसे दर्शाया गया है Z) सामान्यीकरण विभाजक है, जो विहित विभाजन फ़ंक्शन हैयह इस बाधा का परिणाम है कि सभी सुलभ स्थितियों की संभावनाओं को 1 तक जोड़ना होगा।
बोल्ट्ज़मैन वितरण वह वितरण है जो एन्ट्रापी को अधिकतम करता है
यदि हम ब्याज की प्रणाली के लिए सुलभ स्थितियों की ऊर्जा को जानते हैं तो विभाजन फ़ंक्शन की गणना की जा सकती है। परमाणुओं के लिए विभाजन फ़ंक्शन मान राष्ट्रीय मानक और प्रौद्योगिकी संस्थान परमाणु स्पेक्ट्रा डेटाबेस में पाया जा सकता है।[7]
वितरण से पता चलता है कि कम ऊर्जा वाले स्थितियों में हमेशा उच्च ऊर्जा वाले स्थितियों की समानता में कब्ज़ा होने की संभावना अधिक होगी। यह हमें दोनों स्थितियों के कब्जे की संभावनाओं के बीच मात्रात्मक संबंध भी दे सकता है। स्थितियों के लिए संभावनाओं का अनुपात i और j के रूप में दिया गया है
- pi राज्य की संभावना है i,
- pj राज्य की संभावना j,
- εi राज्य की ऊर्जा है i,
- εj राज्य की ऊर्जा है j.
ऊर्जा स्तरों की आबादी के संगत अनुपात को उनकी अध:पतन (क्वांटम यांत्रिकी) को भी ध्यान में रखना चाहिए।
बोल्ट्ज़मैन वितरण का उपयोग अधिकांशतः कणों के वितरण का वर्णन करने के लिए किया जाता है, जैसे कि परमाणु या अणु, उनके लिए सुलभ सीमाओं से परे। यदि हमारे पास कई कणों से युक्त प्रणाली है, तो कण की स्थिति में होने की संभावना है i व्यावहारिक रूप से संभावना यह है कि, यदि हम उस प्रणाली से यादृच्छिक कण चुनते हैं और जांचते हैं कि यह किस स्थिति में है, तो हम पाएंगे कि यह किस स्थिति में है i. यह संभावना राज्य में कणों की संख्या के बराबर है i प्रणाली में कणों की कुल संख्या से विभाजित, वह कणों का अंश है जो स्थिति पर कब्जा कर लेता है i.
कहाँ Ni अवस्था में कणों की संख्या है i और N प्रणाली में कणों की कुल संख्या है। हम इस संभाव्यता को खोजने के लिए बोल्ट्ज़मान वितरण का उपयोग कर सकते हैं, जैसा कि हमने देखा है, i अवस्था में उपस्थित कणों के अंश के बराबर है। तो वह समीकरण जो अवस्था में कणों का अंश देता है i उस अवस्था की ऊर्जा के फलन के रूप में है [5]
मशीन लर्निंग में सामान्यतः उपयोग किया जाने वाला सॉफ्टमैक्स फ़ंक्शन बोल्ट्ज़मैन वितरण से संबंधित है:
सामान्यीकृत बोल्ट्ज़मैन वितरण
फॉर्म का वितरण
कुछ लेखकों द्वारा इसे सामान्यीकृत बोल्ट्ज़मैन वितरण कहा जाता है।[10]
बोल्ट्ज़मान वितरण सामान्यीकृत बोल्ट्ज़मान वितरण का विशेष स्थिति है। सामान्यीकृत बोल्ट्ज़मैन वितरण का उपयोग सांख्यिकीय यांत्रिकी में विहित पहनावा, भव्य विहित पहनावा और इज़ोटेर्मल-आइसोबैरिक पहनावा का वर्णन करने के लिए किया जाता है। सामान्यीकृत बोल्ट्ज़मैन वितरण सामान्यतः अधिकतम एन्ट्रापी के सिद्धांत से प्राप्त होता है, किन्तु अन्य व्युत्पत्तियाँ भी हैं।[10][11]
सामान्यीकृत बोल्ट्ज़मैन वितरण में निम्नलिखित गुण हैं:
- यह एकमात्र वितरण है जिसके लिए एन्ट्रॉपी (सांख्यिकीय थर्मोडायनामिक्स) गिब्स एन्ट्रॉपी फॉर्मूला द्वारा परिभाषित एन्ट्रॉपी एन्ट्रॉपी (शास्त्रीय थर्मोडायनामिक्स) में परिभाषित एन्ट्रॉपी से मेल खाती है।[10]
- यह एकमात्र वितरण है जो गणितीय रूप से मौलिक थर्मोडायनामिक संबंध के अनुरूप है जहां राज्य कार्यों को औसत द्वारा वर्णित किया जाता है।[11]
सांख्यिकीय यांत्रिकी में
बोल्ट्ज़मैन वितरण सांख्यिकीय यांत्रिकी में तब प्रकट होता है जब निश्चित संरचना की बंद प्रणालियों पर विचार किया जाता है जो थर्मल संतुलन (ऊर्जा विनिमय के संबंध में संतुलन) में होती हैं। सबसे सामान्य स्थिति विहित समूह के लिए संभाव्यता वितरण है। कुछ विशेष स्थिति (विहित समूह से व्युत्पन्न) विभिन्न पहलुओं में बोल्ट्ज़मैन वितरण दिखाते हैं:
- विहित पहनावा (सामान्य स्थिति )
- विहित पहनावा ऊष्मा स्नान के साथ तापीय संतुलन में, निश्चित आयतन की बंद प्रणाली की विभिन्न संभावित स्थितियों की संभावनाएँ देता है। विहित समूह में बोल्ट्ज़मैन फॉर्म के साथ राज्य संभाव्यता वितरण होता है।
- उपप्रणालियों की स्थिति की सांख्यिकीय आवृत्तियाँ (गैर-अंतःक्रियात्मक संग्रह में)
- जब रुचि की प्रणाली छोटे उपप्रणाली की कई गैर-अंतःक्रियात्मक प्रतियों का संग्रह होती है, तो संग्रह के बीच किसी दिए गए उपप्रणाली स्थिति की सांख्यिकीय आवृत्ति का पता लगाना कभी-कभी उपयोगी होता है। ऐसे संग्रह पर लागू होने पर विहित समुच्चय में पृथक्करण की संपत्ति होती है: जब तक गैर-अंतःक्रियात्मक उपप्रणालियों की संरचना निश्चित होती है, तब तक प्रत्येक उपप्रणाली की स्थिति दूसरों से स्वतंत्र होती है और विहित समुच्चय की विशेषता भी होती है। परिणामस्वरूप, उपप्रणाली स्थितियों के अपेक्षित मूल्य सांख्यिकीय आवृत्ति वितरण में बोल्ट्ज़मैन रूप होता है।
- शास्त्रीय गैसों के मैक्सवेल-बोल्ट्ज़मैन आँकड़े (गैर-अंतःक्रियात्मक कणों की प्रणाली)
- कण प्रणालियों में, कई कण ही स्थान साझा करते हैं और नियमित रूप से दूसरे के साथ स्थान बदलते हैं; वे जिस एकल-कण अवस्था स्थान पर कब्जा करते हैं वह साझा स्थान है। मैक्सवेल-बोल्ट्ज़मैन आँकड़े संतुलन में गैर-अंतःक्रियात्मक कणों की शास्त्रीय यांत्रिकी गैस में दिए गए एकल-कण अवस्था में पाए जाने वाले कणों की अपेक्षित संख्या देते हैं। इस अपेक्षित संख्या वितरण में बोल्ट्ज़मैन फॉर्म है।
चूँकि इन स्थितियों में मजबूत समानताएँ हैं, किन्तु इन्हें अलग करना मददगार है क्योंकि जब महत्वपूर्ण धारणाएँ बदल जाती हैं तो वे अलग-अलग विधियों से सामान्यीकरण करते हैं:
- जब कोई प्रणाली ऊर्जा विनिमय और कण विनिमय दोनों के संबंध में थर्मोडायनामिक संतुलन में होती है, तो निश्चित संरचना की आवश्यकता में छूट दी जाती है और विहित पहनावा के अतिरिक्त भव्य विहित पहनावा प्राप्त होता है। दूसरी ओर, यदि संरचना और ऊर्जा दोनों निश्चित हैं, तो इसके स्थान पर माइक्रोकैनोनिकल पहनावा लागू होता है।
- यदि किसी संग्रह के भीतर उपप्रणालियाँ एक-दूसरे के साथ परस्पर क्रिया करती हैं, तो उपप्रणाली स्थितियों की अपेक्षित आवृत्तियाँ अब बोल्ट्ज़मान वितरण का पालन नहीं करती हैं, और यहां तक कि उनका कोई विश्लेषणात्मक समाधान भी नहीं हो सकता है।[12] चूँकि , विहित पहनावा अभी भी पूरे प्रणाली की सामूहिक अवस्थाओं पर लागू किया जा सकता है, बशर्ते कि पूरा प्रणाली थर्मल संतुलन में हो।
- संतुलन में गैर-अंतःक्रियात्मक कणों की क्वांटम यांत्रिकी गैसों के साथ, किसी दिए गए एकल-कण अवस्था में पाए जाने वाले कणों की संख्या मैक्सवेल-बोल्ट्ज़मैन आंकड़ों का पालन नहीं करती है, और विहित समूह में क्वांटम गैसों के लिए कोई सरल बंद रूप अभिव्यक्ति नहीं है। भव्य विहित समूह में क्वांटम गैसों के राज्य-भरण आँकड़ों का वर्णन फर्मी-डिराक आँकड़ों या बोस-आइंस्टीन आँकड़ों द्वारा किया जाता है, जो इस बात पर निर्भर करता है कि कण क्रमशः फर्मियन या बोसॉन हैं।
गणित में
अधिक सामान्य गणितीय सेटिंग्स में, बोल्ट्ज़मैन वितरण को गिब्स माप के रूप में भी जाना जाता है। सांख्यिकी और यंत्र अधिगम में, इसे लॉग-रैखिक मॉडल कहा जाता है। गहन शिक्षण में, बोल्ट्ज़मैन वितरण का उपयोग बोल्ट्ज़मान मशीन, प्रतिबंधित बोल्ट्ज़मैन मशीन, ऊर्जा आधारित मॉडल ऊर्जा-आधारित मॉडल और डीप बोल्ट्ज़मैन मशीन जैसे स्टोकेस्टिक तंत्रिका नेटवर्क के नमूना वितरण में किया जाता है। गहन शिक्षण में, बोल्ट्ज़मैन मशीन को बिना पर्यवेक्षित शिक्षण मॉडल में से माना जाता है। गहन शिक्षण में बोल्ट्ज़मैन मशीन के डिज़ाइन में, जैसे-जैसे नोड्स की संख्या बढ़ती है, वास्तविक समय अनुप्रयोगों में कार्यान्वयन की कठिनाई महत्वपूर्ण हो जाती है, इसलिए प्रतिबंधित बोल्ट्ज़मैन मशीन नामक अलग प्रकार की वास्तुकला प्रस्तुत की जाती है।
अर्थशास्त्र में
उत्सर्जन व्यापार में परमिट आवंटित करने के लिए बोल्ट्ज़मैन वितरण प्रारंभ किया जा सकता है।[13][14] बोल्ट्ज़मैन वितरण का उपयोग करने वाली नई आवंटन विधि कई देशों के बीच उत्सर्जन परमिट के सबसे संभावित, प्राकृतिक और निष्पक्ष वितरण का वर्णन कर सकती है।
बोल्ट्ज़मैन वितरण का रूप बहुराष्ट्रीय लॉजिस्टिक प्रतिगमन मॉडल के समान है। अलग विकल्प मॉडल के रूप में, यह अर्थशास्त्र में बहुत अच्छी प्रकार से जाना जाता है क्योंकि डेनियल मैकफैडेन ने यादृच्छिक उपयोगिता अधिकतमकरण से संबंध बनाया है।[15]
यह भी देखें
- बोस-आइंस्टीन आँकड़े
- फ़र्मी-डिराक आँकड़े
- नकारात्मक तापमान
- सॉफ्टमैक्स फ़ंक्शन
संदर्भ
- ↑ 1.0 1.1 Landau, Lev Davidovich & Lifshitz, Evgeny Mikhailovich (1980) [1976]. सांख्यिकीय भौतिकी. Course of Theoretical Physics. Vol. 5 (3 ed.). Oxford: Pergamon Press. ISBN 0-7506-3372-7. Translated by J.B. Sykes and M.J. Kearsley. See section 28
- ↑ Boltzmann, Ludwig (1868). "Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten materiellen Punkten" [Studies on the balance of living force between moving material points]. Wiener Berichte. 58: 517–560.
- ↑ "संग्रहीत प्रति" (PDF). Archived from the original (PDF) on 2021-03-05. Retrieved 2017-05-11.
- ↑ Gibbs, Josiah Willard (1902). सांख्यिकीय यांत्रिकी में प्राथमिक सिद्धांत. New York: Charles Scribner's Sons.
- ↑ 5.0 5.1 5.2 5.3 Atkins, P. W. (2010) Quanta, W. H. Freeman and Company, New York
- ↑ 6.0 6.1 McQuarrie, A. (2000). सांख्यिकीय यांत्रिकी. Sausalito, CA: University Science Books. ISBN 1-891389-15-7.
- ↑ NIST Atomic Spectra Database Levels Form at nist.gov
- ↑ Atkins, P. W.; de Paula, J. (2009). भौतिक रसायन (9th ed.). Oxford: Oxford University Press. ISBN 978-0-19-954337-3.
- ↑ Skoog, D. A.; Holler, F. J.; Crouch, S. R. (2006). वाद्य विश्लेषण के सिद्धांत. Boston, MA: Brooks/Cole. ISBN 978-0-495-12570-9.
- ↑ 10.0 10.1 10.2 Gao, Xiang; Gallicchio, Emilio; Roitberg, Adrian (2019). "सामान्यीकृत बोल्ट्ज़मान वितरण एकमात्र वितरण है जिसमें गिब्स-शैनन एन्ट्रॉपी थर्मोडायनामिक एन्ट्रॉपी के बराबर होती है". The Journal of Chemical Physics. 151 (3): 034113. arXiv:1903.02121. Bibcode:2019JChPh.151c4113G. doi:10.1063/1.5111333. PMID 31325924. S2CID 118981017.
- ↑ 11.0 11.1 Gao, Xiang (March 2022). "एन्सेम्बल थ्योरी का गणित". Results in Physics. 34: 105230. Bibcode:2022ResPh..3405230G. doi:10.1016/j.rinp.2022.105230. S2CID 221978379.
- ↑ A classic example of this is magnetic ordering. Systems of non-interacting spins show paramagnetic behaviour that can be understood with a single-particle canonical ensemble (resulting in the Brillouin function). Systems of interacting spins can show much more complex behaviour such as ferromagnetism or antiferromagnetism.
- ↑ Park, J.-W., Kim, C. U. and Isard, W. (2012) Permit allocation in emissions trading using the Boltzmann distribution. Physica A 391: 4883–4890
- ↑ The Thorny Problem Of Fair Allocation. Technology Review blog. August 17, 2011. Cites and summarizes Park, Kim and Isard (2012).
- ↑ Amemiya, Takeshi (1985). "Multinomial Logit Model". उन्नत अर्थमिति. Oxford: Basil Blackwell. pp. 295–299. ISBN 0-631-13345-3.