बंडल समायोजन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[File:Bundle adjustment sparse matrix.png|right|thumb|सामान्य आकार के बंडल समायोजन समस्या को हल करते समय प्राप्त [[विरल मैट्रिक्स]]। यह 992×992 सामान्य-समीकरण (अर्थात अनुमानित हेसियन) मैट्रिक्स का एरोहेड स्पार्सिटी पैटर्न है। काले क्षेत्र गैर-शून्य ब्लॉकों के अनुरूप हैं।]][[ photogrammetry |फोटोग्रामेट्री]] और [[कंप्यूटर स्टीरियो विज़न]] में, '''बंडल समायोजन''' 3डी [[निर्देशांक तरीका|निर्देशांक विधि]] का साथ परिष्करण है, जो दृश्य ज्यामिति, सापेक्ष गति के मापदंडों और छवियों का सेट होता है जो दिए गए छवियों को प्राप्त करने के लिए नियोजित कैमरे की ऑप्टिकल विशेषताओं का वर्णन करता है। जो [[स्टीरियोस्कोपी]] के उपयोग से अनेक 3डी बिंदुओं का चित्रण किया जाता है।
[[File:Bundle adjustment sparse matrix.png|right|thumb|सामान्य आकार के बंडल समायोजन समस्या को हल करते समय प्राप्त [[विरल मैट्रिक्स]]। यह 992×992 सामान्य-समीकरण (अर्थात अनुमानित हेसियन) आव्यूह का एरोहेड स्पार्सिटी पैटर्न है। काले क्षेत्र गैर-शून्य ब्लॉकों के अनुरूप हैं।]][[ photogrammetry |फोटोग्रामेट्री]] और [[कंप्यूटर स्टीरियो विज़न]] में, '''बंडल समायोजन''' 3डी [[निर्देशांक तरीका|निर्देशांक विधि]] का साथ परिष्करण है, जो दृश्य ज्यामिति, सापेक्ष गति के मापदंडों और छवियों का सेट होता है जो दिए गए छवियों को प्राप्त करने के लिए नियोजित कैमरे की ऑप्टिकल विशेषताओं का वर्णन करता है। जो [[स्टीरियोस्कोपी]] के उपयोग से अनेक 3डी बिंदुओं का चित्रण किया जाता है।
इसका नाम उन प्रत्येक 3डी सुविधा से उत्पन्न होने वाली और प्रत्येक पिनहोल कैमरे के ऑप्टिकल केंद्र पर परिवर्तित होने वाली प्रकाश किरणों के ''[[बंडल (ज्यामिति)]]'' को संदर्भित करता है, जो सभी के [[पत्राचार समस्या]] छवि प्रक्षेपणों को सम्मलित करने वाले इष्टतमता मानदंड के अनुसार इष्टतम रूप से समायोजित होते हैं।  
इसका नाम उन प्रत्येक 3डी सुविधा से उत्पन्न होने वाली और प्रत्येक पिनहोल कैमरे के ऑप्टिकल केंद्र पर परिवर्तित होने वाली प्रकाश किरणों के ''[[बंडल (ज्यामिति)]]'' को संदर्भित करता है, जो सभी के [[पत्राचार समस्या]] छवि प्रक्षेपणों को सम्मलित करने वाले इष्टतमता मानदंड के अनुसार इष्टतम रूप से समायोजित होते हैं।  


Line 17: Line 17:


==सामान्य दृष्टिकोण==
==सामान्य दृष्टिकोण==
बंडल समायोजन का उद्देश्य छवि स्थानों के बीच [[पुनर्प्रक्षेपण त्रुटि]] को कम करना है। छवि बिंदुओं का अवलोकन और पूर्वानुमान किया गया, जिसे बड़ी संख्या में गैर-रेखीय, वास्तविक-मूल्यवान कार्यों के वर्गों के योग के रूप में व्यक्त किया गया है। इस प्रकार, गैर-रेखीय न्यूनतम-वर्ग एल्गोरिदम का उपयोग करके न्यूनतमकरण प्राप्त किया जाता है। इनमें से लेवेनबर्ग-मार्क्वार्ड एल्गोरिदम भी है | लेवेनबर्ग-मार्क्वार्ड अपने कार्यान्वयन में आसानी और प्रभावी डंपिंग रणनीति के उपयोग के कारण सबसे सफल एल्गोरिदम में से सिद्ध हुआ है जो इसे प्रारंभिक अनुमानों की विस्तृत श्रृंखला से जल्दी से अभिसरण करने की क्षमता प्रदान करता है। वर्तमान अनुमान के पड़ोस में न्यूनतम किए जाने वाले फ़ंक्शन को पुनरावृत्त रूप से रैखिक बनाकर, लेवेनबर्ग-मार्क्वार्ड एल्गोरिदम में [[रैखिक समीकरणों की प्रणाली]] का समाधान सम्मलित होता है जिसे [[रैखिक न्यूनतम वर्ग (गणित)]] कहा जाता है। बंडल समायोजन के ढांचे में उत्पन्न होने वाली न्यूनतमकरण समस्याओं को हल करते समय, विभिन्न 3डी बिंदुओं और कैमरों के लिए मापदंडों के बीच इंटरैक्शन की कमी के कारण सामान्य समीकरणों में विरल मैट्रिक्स ब्लॉक संरचना होती है। लेवेनबर्ग-मार्क्वार्ड एल्गोरिथ्म के विरल संस्करण को नियोजित करके जबरदस्त कम्प्यूटेशनल लाभ प्राप्त करने के लिए इसका लाभ उठाया जा सकता है जो स्पष्ट रूप से सामान्य समीकरण शून्य पैटर्न का लाभ उठाता है और भंडारण और शून्य-तत्वों पर संचालन से बचता है।<ref name="sba2009" />{{rp|3}}
बंडल समायोजन का उद्देश्य छवि स्थानों के बीच [[पुनर्प्रक्षेपण त्रुटि]] को कम करना है। छवि बिंदुओं का अवलोकन और पूर्वानुमान किया गया, जिसे बड़ी संख्या में गैर-रेखीय, वास्तविक-मूल्यवान कार्यों के वर्गों के योग के रूप में व्यक्त किया गया है। इस प्रकार, गैर-रेखीय न्यूनतम-वर्ग एल्गोरिदम का उपयोग करके न्यूनतमकरण प्राप्त किया जाता है। इनमें से लेवेनबर्ग-मार्क्वार्ड एल्गोरिदम भी है | लेवेनबर्ग-मार्क्वार्ड अपने कार्यान्वयन में आसानी और प्रभावी डंपिंग रणनीति के उपयोग के कारण सबसे सफल एल्गोरिदम में से सिद्ध हुआ है जो इसे प्रारंभिक अनुमानों की विस्तृत श्रृंखला से जल्दी से अभिसरण करने की क्षमता प्रदान करता है। वर्तमान अनुमान के पड़ोस में न्यूनतम किए जाने वाले फ़ंक्शन को पुनरावृत्त रूप से रैखिक बनाकर, लेवेनबर्ग-मार्क्वार्ड एल्गोरिदम में [[रैखिक समीकरणों की प्रणाली]] का समाधान सम्मलित होता है जिसे [[रैखिक न्यूनतम वर्ग (गणित)]] कहा जाता है। बंडल समायोजन के ढांचे में उत्पन्न होने वाली न्यूनतमकरण समस्याओं को हल करते समय, विभिन्न 3डी बिंदुओं और कैमरों के लिए मापदंडों के बीच इंटरैक्शन की कमी के कारण सामान्य समीकरणों में विरल आव्यूह ब्लॉक संरचना होती है। लेवेनबर्ग-मार्क्वार्ड एल्गोरिथ्म के विरल संस्करण को नियोजित करके जबरदस्त कम्प्यूटेशनल लाभ प्राप्त करने के लिए इसका लाभ उठाया जा सकता है जो स्पष्ट रूप से सामान्य समीकरण शून्य पैटर्न का लाभ उठाता है और भंडारण और शून्य-तत्वों पर संचालन से बचता है।<ref name="sba2009" />{{rp|3}}


==गणितीय परिभाषा==
==गणितीय परिभाषा==
Line 27: Line 27:
year=2004 |
year=2004 |
isbn=978-0-521-54051-3
isbn=978-0-521-54051-3
}}</ref> ये मान लीजिए की <math>n</math> इसमें 3डी बिंदु दिखाई दे रहे हैं <math>m</math> विचार और चलो <math>\mathbf{x}_{ij}</math> का प्रक्षेपण हो <math>i</math> छवि पर वां बिंदु <math>j</math>। होने देना <math>\displaystyle v_{ij}</math> यदि बिंदु 1 के बराबर है तो बाइनरी चर को निरूपित करें <math>i</math> छवि में दिखाई दे रहा है <math>j</math> और 0 अन्यथा। यह भी मान लें कि प्रत्येक कैमरा <math>j</math> वेक्टर द्वारा पैरामिट्रीकृत किया गया है <math>\mathbf{a}_j</math> और प्रत्येक 3डी बिंदु <math>i</math> सदिश द्वारा <math>\mathbf{b}_i</math>। बंडल समायोजन, विशेष रूप से सभी 3डी बिंदु और कैमरा मापदंडों के संबंध में कुल पुनर्प्रक्षेपण त्रुटि को कम करता है
}}</ref> ये मान लीजिए की <math>n</math> इसमें 3डी बिंदु दिखाई दे रहे हैं <math>m</math> विचार और चलो <math>\mathbf{x}_{ij}</math> का प्रक्षेपण हो <math>i</math> छवि पर वां बिंदु <math>j</math>। होने देना <math>\displaystyle v_{ij}</math> यदि बिंदु 1 के बराबर है तो बाइनरी चर को निरूपित करें <math>i</math> छवि में दिखाई दे रहा है <math>j</math> और 0 अन्यथा। यह भी मान लें कि प्रत्येक कैमरा <math>j</math> सदिश द्वारा पैरामिट्रीकृत किया गया है <math>\mathbf{a}_j</math> और प्रत्येक 3डी बिंदु <math>i</math> सदिश द्वारा <math>\mathbf{b}_i</math>। बंडल समायोजन, विशेष रूप से सभी 3डी बिंदु और कैमरा मापदंडों के संबंध में कुल पुनर्प्रक्षेपण त्रुटि को कम करता है


:<math>
:<math>
\min_{\mathbf{a}_j, \, \mathbf{b}_i} \displaystyle\sum_{i=1}^{n} \; \displaystyle\sum_{j=1}^{m} \; v_{ij} \, d(\mathbf{Q}(\mathbf{a}_j, \, \mathbf{b}_i), \; \mathbf{x}_{ij})^2,
\min_{\mathbf{a}_j, \, \mathbf{b}_i} \displaystyle\sum_{i=1}^{n} \; \displaystyle\sum_{j=1}^{m} \; v_{ij} \, d(\mathbf{Q}(\mathbf{a}_j, \, \mathbf{b}_i), \; \mathbf{x}_{ij})^2,
</math>
</math>
यहाँ <math>\mathbf{Q}(\mathbf{a}_j, \, \mathbf{b}_i)</math> बिंदु का अनुमानित [[कैमरा मैट्रिक्स]] है <math>i</math> छवि पर <math>j</math> और <math>d(\mathbf{x}, \, \mathbf{y})</math> वैक्टर द्वारा दर्शाए गए छवि बिंदुओं के बीच यूक्लिडियन दूरी को दर्शाता है <math>\mathbf{x}</math> और <math>\mathbf{y}</math>। क्योंकि न्यूनतम की गणना कई बिंदुओं और कई छवियों पर की जाती है, बंडल समायोजन परिभाषा के अनुसार लापता छवि प्रक्षेपणों के प्रति सहनशील है, और यदि दूरी मीट्रिक को उचित रूप से चुना जाता है (उदाहरण के लिए, यूक्लिडियन दूरी), तो बंडल समायोजन भौतिक रूप से सार्थक मानदंड को भी कम कर दिया जाता है।
यहाँ <math>\mathbf{Q}(\mathbf{a}_j, \, \mathbf{b}_i)</math> बिंदु का अनुमानित [[कैमरा मैट्रिक्स|कैमरा आव्यूह]] है <math>i</math> छवि पर <math>j</math> और <math>d(\mathbf{x}, \, \mathbf{y})</math> सदिश द्वारा दर्शाए गए छवि बिंदुओं के बीच यूक्लिडियन दूरी को दर्शाता है <math>\mathbf{x}</math> और <math>\mathbf{y}</math>। क्योंकि न्यूनतम की गणना कई बिंदुओं और कई छवियों पर की जाती है, बंडल समायोजन परिभाषा के अनुसार लापता छवि प्रक्षेपणों के प्रति सहनशील है, और यदि दूरी मीट्रिक को उचित रूप से चुना जाता है (उदाहरण के लिए, यूक्लिडियन दूरी), तो बंडल समायोजन भौतिक रूप से सार्थक मानदंड को भी कम कर दिया जाता है।


==यह भी देखें==
==यह भी देखें==

Revision as of 11:30, 19 July 2023

File:Bundle adjustment sparse matrix.png
सामान्य आकार के बंडल समायोजन समस्या को हल करते समय प्राप्त विरल मैट्रिक्स। यह 992×992 सामान्य-समीकरण (अर्थात अनुमानित हेसियन) आव्यूह का एरोहेड स्पार्सिटी पैटर्न है। काले क्षेत्र गैर-शून्य ब्लॉकों के अनुरूप हैं।

फोटोग्रामेट्री और कंप्यूटर स्टीरियो विज़न में, बंडल समायोजन 3डी निर्देशांक विधि का साथ परिष्करण है, जो दृश्य ज्यामिति, सापेक्ष गति के मापदंडों और छवियों का सेट होता है जो दिए गए छवियों को प्राप्त करने के लिए नियोजित कैमरे की ऑप्टिकल विशेषताओं का वर्णन करता है। जो स्टीरियोस्कोपी के उपयोग से अनेक 3डी बिंदुओं का चित्रण किया जाता है।

इसका नाम उन प्रत्येक 3डी सुविधा से उत्पन्न होने वाली और प्रत्येक पिनहोल कैमरे के ऑप्टिकल केंद्र पर परिवर्तित होने वाली प्रकाश किरणों के बंडल (ज्यामिति) को संदर्भित करता है, जो सभी के पत्राचार समस्या छवि प्रक्षेपणों को सम्मलित करने वाले इष्टतमता मानदंड के अनुसार इष्टतम रूप से समायोजित होते हैं।

उपयोग

बंडल समायोजन लगभग हमेशा[citation needed] सुविधा-आधारित 3डी पुनर्निर्माण एल्गोरिदमों की अंतिम प्रक्रिया के रूप में प्रयोग किया जाता है। यह 3डी संरचना और देखने के मापदंडों (अर्थात , कैमरा पोज़ (कंप्यूटर दृष्टि) और संभवतः आंतरिक अंशांकन और रेडियल विरूपण) पर अनुकूलन समस्या के समान होता है, जिससे पुनर्निर्माण प्राप्त किया जा सके, जो निर्धारित अनुमानों के अंतर्गत आवश्यकताओं के अनुसार आपूर्ति रूप हो: यदि छवि त्रुटि शून्य-माध्य गाऊसी है, तो बंडल समायोजन अधिकतम संभावना का अनुमानकर्ता होता है।[1]: 2  बंडल समायोजन की कल्पना मूल रूप से 1950 के दशक के समय फोटोग्रामेट्री के क्षेत्र में की गई थी और हाल के वर्षों के समय कंप्यूटर दृष्टि शोधकर्ताओं द्वारा बढ़ती हुई मात्रा में प्रयोग की जाती है।।[1]: 2 

सामान्य दृष्टिकोण

बंडल समायोजन का उद्देश्य छवि स्थानों के बीच पुनर्प्रक्षेपण त्रुटि को कम करना है। छवि बिंदुओं का अवलोकन और पूर्वानुमान किया गया, जिसे बड़ी संख्या में गैर-रेखीय, वास्तविक-मूल्यवान कार्यों के वर्गों के योग के रूप में व्यक्त किया गया है। इस प्रकार, गैर-रेखीय न्यूनतम-वर्ग एल्गोरिदम का उपयोग करके न्यूनतमकरण प्राप्त किया जाता है। इनमें से लेवेनबर्ग-मार्क्वार्ड एल्गोरिदम भी है | लेवेनबर्ग-मार्क्वार्ड अपने कार्यान्वयन में आसानी और प्रभावी डंपिंग रणनीति के उपयोग के कारण सबसे सफल एल्गोरिदम में से सिद्ध हुआ है जो इसे प्रारंभिक अनुमानों की विस्तृत श्रृंखला से जल्दी से अभिसरण करने की क्षमता प्रदान करता है। वर्तमान अनुमान के पड़ोस में न्यूनतम किए जाने वाले फ़ंक्शन को पुनरावृत्त रूप से रैखिक बनाकर, लेवेनबर्ग-मार्क्वार्ड एल्गोरिदम में रैखिक समीकरणों की प्रणाली का समाधान सम्मलित होता है जिसे रैखिक न्यूनतम वर्ग (गणित) कहा जाता है। बंडल समायोजन के ढांचे में उत्पन्न होने वाली न्यूनतमकरण समस्याओं को हल करते समय, विभिन्न 3डी बिंदुओं और कैमरों के लिए मापदंडों के बीच इंटरैक्शन की कमी के कारण सामान्य समीकरणों में विरल आव्यूह ब्लॉक संरचना होती है। लेवेनबर्ग-मार्क्वार्ड एल्गोरिथ्म के विरल संस्करण को नियोजित करके जबरदस्त कम्प्यूटेशनल लाभ प्राप्त करने के लिए इसका लाभ उठाया जा सकता है जो स्पष्ट रूप से सामान्य समीकरण शून्य पैटर्न का लाभ उठाता है और भंडारण और शून्य-तत्वों पर संचालन से बचता है।[1]: 3 

गणितीय परिभाषा

इस प्रकार बंडल समायोजन का अर्थ पैरामीटर के सेट को खोजने के लिए प्रारंभिक कैमरा और संरचना पैरामीटर अनुमानों के सेट को संयुक्त रूप से परिष्कृत करना होता है जो उपलब्ध छवियों के सेट में देखे गए बिंदुओं के स्थानों की सबसे सटीक भविष्यवाणी करता है। अधिक औपचारिक रूप से,[2] ये मान लीजिए की इसमें 3डी बिंदु दिखाई दे रहे हैं विचार और चलो का प्रक्षेपण हो छवि पर वां बिंदु । होने देना यदि बिंदु 1 के बराबर है तो बाइनरी चर को निरूपित करें छवि में दिखाई दे रहा है और 0 अन्यथा। यह भी मान लें कि प्रत्येक कैमरा सदिश द्वारा पैरामिट्रीकृत किया गया है और प्रत्येक 3डी बिंदु सदिश द्वारा । बंडल समायोजन, विशेष रूप से सभी 3डी बिंदु और कैमरा मापदंडों के संबंध में कुल पुनर्प्रक्षेपण त्रुटि को कम करता है

यहाँ बिंदु का अनुमानित कैमरा आव्यूह है छवि पर और सदिश द्वारा दर्शाए गए छवि बिंदुओं के बीच यूक्लिडियन दूरी को दर्शाता है और । क्योंकि न्यूनतम की गणना कई बिंदुओं और कई छवियों पर की जाती है, बंडल समायोजन परिभाषा के अनुसार लापता छवि प्रक्षेपणों के प्रति सहनशील है, और यदि दूरी मीट्रिक को उचित रूप से चुना जाता है (उदाहरण के लिए, यूक्लिडियन दूरी), तो बंडल समायोजन भौतिक रूप से सार्थक मानदंड को भी कम कर दिया जाता है।

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 M.I.A. Lourakis and A.A. Argyros (2009). "SBA: A Software Package for Generic Sparse Bundle Adjustment" (PDF). ACM Transactions on Mathematical Software. 36 (1): 1–30. doi:10.1145/1486525.1486527. S2CID 474253.
  2. R.I. Hartley and A. Zisserman (2004). Multiple View Geometry in computer vision (2nd ed.). Cambridge University Press. ISBN 978-0-521-54051-3.


अग्रिम पठन


बाहरी संबंध

सॉफ़्टवेयर

  • [1]: Apero/MicMac, निःशुल्क ओपन सोर्स फोटोग्रामेट्रिक सॉफ्टवेयर। सेसिल-बी लाइसेंस.
  • sba: लेवेनबर्ग-मार्क्वार्ड एल्गोरिथम (C (प्रोग्रामिंग भाषा), MATLAB) पर आधारित जेनेरिक स्पार्स बंडल एडजस्टमेंट C/C++ पैकेज। जीपीएल.
  • cvsba: sba लाइब्रेरी के लिए ओपनसीवी रैपर (सी++). जीपीएल.
  • ssba: लेवेनबर्ग-मार्क्वार्ड एल्गोरिथम (C++) पर आधारित सरल स्पार्स बंडल समायोजन पैकेज। एलजीपीएल.
  • OpenCV: इमेज स्टिचिंग मॉड्यूल में कंप्यूटर विज़न लाइब्रेरी। बीएसडी लाइसेंस.
  • mcba: मल्टी-कोर बंडल एडजस्टमेंट (सीपीयू/जीपीयू)। जीपीएल3.
  • libDoleg: पॉवेल की डॉगलेग पद्धति पर आधारित सामान्य प्रयोजन विरल गैर-रैखिक न्यूनतम वर्ग सॉल्वर। एलजीपीएल.
  • ceres-solver: नॉनलाइनियर कम से कम वर्ग मिनिमाइज़र। बीएसडी लाइसेंस.
  • g2o: सामान्य ग्राफ अनुकूलन (C++) - विरल ग्राफ-आधारित गैर-रेखीय त्रुटि कार्यों के लिए सॉल्वर के साथ ढांचा। एलजीपीएल.
  • DGAP: प्रोग्राम DGAP हेल्मुट श्मिट और डुआने ब्राउन द्वारा आविष्कृत बंडल समायोजन की फोटोग्राममेट्रिक पद्धति को लागू करता है। जीपीएल.
  • बंडलर: नूह स्नेवली द्वारा अव्यवस्थित छवि संग्रह (उदाहरण के लिए, इंटरनेट से छवियां) के लिए संरचना-से-गति (एसएफएम) प्रणाली। जीपीएल.
  • COLMAP: ग्राफ़िकल और कमांड-लाइन इंटरफ़ेस के साथ सामान्य-उद्देश्य स्ट्रक्चर-फ़्रॉम-मोशन (SfM) और मल्टी-व्यू स्टीरियो (MVS) पाइपलाइन। बीएसडी लाइसेंस.
  • Theia: कंप्यूटर विज़न लाइब्रेरी जिसका उद्देश्य स्ट्रक्चर फ्रॉम मोशन (एसएफएम) के लिए कुशल और विश्वसनीय एल्गोरिदम प्रदान करना है। नया बीएसडी लाइसेंस.
  • एम्स स्टीरियो पाइपलाइन में बंडल समायोजन (अपाचे II लाइसेंस) के लिए उपकरण है।

श्रेणी:कंप्यूटर दृष्टि में ज्यामिति श्रेणी:जियोडेसी श्रेणी:फोटोग्राममेट्री श्रेणी:सर्वेक्षण श्रेणी: मानचित्रकला