अनगणना: Difference between revisions

From Vigyanwiki
(Created page with "thumb|400px|[[टोफोली गेट्स और एंसीला बिट्...")
 
No edit summary
Line 1: Line 1:
[[File:Using Toffoli Gates and Ancilla Bits to make a Not Gate with many controls.png|thumb|400px|[[टोफोली गेट]]्स और एंसीला बिट्स में से पांच नियंत्रणों का एक तार्किक संयोजन बनाना। फिनिशिंग से पहले एंसीला बिट्स को उनकी मूल स्थिति में पुनर्स्थापित करने के लिए अनकंप्यूटेशन का उपयोग किया जाता है।]]अनकंप्यूटेशन एक तकनीक है, जिसका उपयोग [[ प्रतिवर्ती कंप्यूटिंग ]] सर्किट में [[नौकरानी बिट]] पर अस्थायी प्रभावों को साफ करने के लिए किया जाता है ताकि उनका पुन: उपयोग किया जा सके।<ref>{{cite arXiv |eprint=1504.05155|last1=Aaronson|first1=Scott|title=प्रतिवर्ती बिट संचालन का वर्गीकरण|last2=Grier|first2=Daniel|last3=Schaeffer|first3=Luke|class=quant-ph|year=2015}}</ref>
[[File:Using Toffoli Gates and Ancilla Bits to make a Not Gate with many controls.png|thumb|400px|[[टोफोली गेट]]्स और एंसीला बिट्स में से पांच नियंत्रणों का तार्किक संयोजन बनाना। फिनिशिंग से पहले एंसीला बिट्स को उनकी मूल स्थिति में पुनर्स्थापित करने के लिए अनकंप्यूटेशन का उपयोग किया जाता है।]]अनकंप्यूटेशन एक कार्यपद्धति है, जिसका उपयोग [[ प्रतिवर्ती कंप्यूटिंग ]] सर्किट में [[नौकरानी बिट]] पर अस्थायी प्रभावों को साफ करने के लिए किया जाता है जिससे उनका पुन: उपयोग कर सकते हैं ।<ref>{{cite arXiv |eprint=1504.05155|last1=Aaronson|first1=Scott|title=प्रतिवर्ती बिट संचालन का वर्गीकरण|last2=Grier|first2=Daniel|last3=Schaeffer|first3=Luke|class=quant-ph|year=2015}}</ref>
[[ क्वांटम कम्प्यूटिंग ]] एल्गोरिदम में अनकंप्यूटेशन एक मौलिक कदम है। मध्यवर्ती प्रभावों की गणना नहीं की गई है या नहीं, इससे यह प्रभावित होता है कि परिणाम मापते समय राज्य एक-दूसरे के साथ कैसे हस्तक्षेप करते हैं।<ref>{{Cite journal|arxiv=quant-ph/0209060|last1=Aaronson|first1=Scott|title=पुनरावर्ती फूरियर नमूने के लिए क्वांटम लोअर बाउंड|journal=Quantum Information and Computation ():, 00|volume=3|issue=2|pages=165–174|year=2002|doi=10.26421/QIC3.2-7 |bibcode=2002quant.ph..9060A}}</ref>
[[ क्वांटम कम्प्यूटिंग ]] एल्गोरिदम में अनकंप्यूटेशन मौलिक कदम है। मध्यवर्ती प्रभावों की गणना की गई है या नहीं, इससे यह प्रभावित होता है कि परिणाम मापते समय राज्य एक-दूसरे के साथ कैसे हस्तक्षेप करते हैं।<ref>{{Cite journal|arxiv=quant-ph/0209060|last1=Aaronson|first1=Scott|title=पुनरावर्ती फूरियर नमूने के लिए क्वांटम लोअर बाउंड|journal=Quantum Information and Computation ():, 00|volume=3|issue=2|pages=165–174|year=2002|doi=10.26421/QIC3.2-7 |bibcode=2002quant.ph..9060A}}</ref>
यह प्रक्रिया मुख्य रूप से अंतर्निहित माप के सिद्धांत से प्रेरित है।<ref>Nielsen, Michael; Chuang, Isaac. "Quantum Computation and Quantum Information"</ref>, जो बताता है कि गणना के दौरान किसी रजिस्टर को छोड़ना भौतिक रूप से उसे मापने के बराबर है। कचरा रजिस्टरों की गणना न करने से अनजाने परिणाम हो सकते हैं। उदाहरण के लिए, यदि हम राज्य को लें <math></math> <math>
यह प्रक्रिया मुख्य रूप से अंतर्निहित माप के सिद्धांत से प्रेरित है।<ref>Nielsen, Michael; Chuang, Isaac. "Quantum Computation and Quantum Information"</ref>, जो बताता है कि गणना के समय किसी रजिस्टर को छोड़ना भौतिक रूप से उसे मापने के बराबर है। कचरा रजिस्टरों की गणना न करने से अनजाने परिणाम हो सकते हैं। उदाहरण के लिए, यदि हम राज्य को लें <math></math> <math>
\frac{1}{\sqrt 2}(|0\rangle|g_0\rangle + |1\rangle|g_1\rangle)
\frac{1}{\sqrt 2}(|0\rangle|g_0\rangle + |1\rangle|g_1\rangle)
</math> कहाँ <math>g_0</math> और <math>g_1</math> कचरा रजिस्टर हैं. फिर, यदि हम उन रजिस्टरों पर कोई और ऑपरेशन लागू नहीं करते हैं, तो अंतर्निहित माप के सिद्धांत के अनुसार, उलझी हुई स्थिति को मापा गया है, जिसके परिणामस्वरूप दोनों में से कोई भी ढह जाएगा <math>|0\rangle|g_0\rangle</math> या <math>|1\rangle|g_1\rangle</math> संभाव्यता के साथ <math>\frac{1}{2}</math>. जो चीज़ इसे अवांछनीय बनाती है वह यह है कि प्रोग्राम समाप्त होने से पहले तरंग-फ़ंक्शन पतन होता है, और इस प्रकार अपेक्षित परिणाम नहीं मिल सकता है।
</math> कहाँ <math>g_0</math> और <math>g_1</math> कचरा रजिस्टर हैं. फिर, यदि हम उन रजिस्टरों पर कोई और ऑपरेशन लागू नहीं करते हैं, तो अंतर्निहित माप के सिद्धांत के अनुसार, दुविधा की स्थिति को मापा गया है, जिसके परिणामस्वरूप दोनों में से कोई भी ढह जाएगा <math>|0\rangle|g_0\rangle</math> या <math>|1\rangle|g_1\rangle</math> संभाव्यता के साथ <math>\frac{1}{2}</math>. जो चीज़ इसे अवांछनीय बनाती है वह यह है कि प्रोग्राम समाप्त होने से पहले तरंग-फ़ंक्शन पतन होता है, और इस प्रकार अपेक्षित परिणाम नहीं मिल सकता है।


==संदर्भ==
==संदर्भ==

Revision as of 20:37, 14 July 2023

टोफोली गेट्स और एंसीला बिट्स में से पांच नियंत्रणों का तार्किक संयोजन बनाना। फिनिशिंग से पहले एंसीला बिट्स को उनकी मूल स्थिति में पुनर्स्थापित करने के लिए अनकंप्यूटेशन का उपयोग किया जाता है।

अनकंप्यूटेशन एक कार्यपद्धति है, जिसका उपयोग प्रतिवर्ती कंप्यूटिंग सर्किट में नौकरानी बिट पर अस्थायी प्रभावों को साफ करने के लिए किया जाता है जिससे उनका पुन: उपयोग कर सकते हैं ।[1]

क्वांटम कम्प्यूटिंग एल्गोरिदम में अनकंप्यूटेशन मौलिक कदम है। मध्यवर्ती प्रभावों की गणना की गई है या नहीं, इससे यह प्रभावित होता है कि परिणाम मापते समय राज्य एक-दूसरे के साथ कैसे हस्तक्षेप करते हैं।[2] यह प्रक्रिया मुख्य रूप से अंतर्निहित माप के सिद्धांत से प्रेरित है।[3], जो बताता है कि गणना के समय किसी रजिस्टर को छोड़ना भौतिक रूप से उसे मापने के बराबर है। कचरा रजिस्टरों की गणना न करने से अनजाने परिणाम हो सकते हैं। उदाहरण के लिए, यदि हम राज्य को लें Failed to parse (⧼math_empty_tex⧽): {\displaystyle } कहाँ और कचरा रजिस्टर हैं. फिर, यदि हम उन रजिस्टरों पर कोई और ऑपरेशन लागू नहीं करते हैं, तो अंतर्निहित माप के सिद्धांत के अनुसार, दुविधा की स्थिति को मापा गया है, जिसके परिणामस्वरूप दोनों में से कोई भी ढह जाएगा या संभाव्यता के साथ . जो चीज़ इसे अवांछनीय बनाती है वह यह है कि प्रोग्राम समाप्त होने से पहले तरंग-फ़ंक्शन पतन होता है, और इस प्रकार अपेक्षित परिणाम नहीं मिल सकता है।

संदर्भ

  1. Aaronson, Scott; Grier, Daniel; Schaeffer, Luke (2015). "प्रतिवर्ती बिट संचालन का वर्गीकरण". arXiv:1504.05155 [quant-ph].
  2. Aaronson, Scott (2002). "पुनरावर्ती फूरियर नमूने के लिए क्वांटम लोअर बाउंड". Quantum Information and Computation ():, 00. 3 (2): 165–174. arXiv:quant-ph/0209060. Bibcode:2002quant.ph..9060A. doi:10.26421/QIC3.2-7.
  3. Nielsen, Michael; Chuang, Isaac. "Quantum Computation and Quantum Information"