विपरीत समूह: Difference between revisions

From Vigyanwiki
(TEXT)
(TEXT)
Line 1: Line 1:
[[File:Opposite_group_nature.svg|thumbnail|यह एक समूह से उसके विपरीत तक बाइनरी संचालन का  एक [[प्राकृतिक परिवर्तन]] है। {{angbr|''g''<sub>1</sub>, ''g''<sub>2</sub>}} दो समूह अवयव की क्रमित युग्म को दर्शाता है। *' को + के स्वाभाविक रूप से प्रेरित जोड़ के रूप में देखा जा सकता है।]][[समूह सिद्धांत]] में, गणित की एक शाखा, एक विपरीत समूह दूसरे समूह से एक [[समूह (गणित)|समूह]] बनाने का एक प्रकार है जो किसी को [[समूह क्रिया (गणित)|बाईं क्रिया (गणित)]] के विशेष प्रकरण के रूप में दाहिनी क्रिया को परिभाषित करने की अनुमति देता है।
[[File:Opposite_group_nature.svg|thumbnail|यह एक समूह से उसके विपरीत तक द्विआधारी संचालन का  एक [[प्राकृतिक परिवर्तन]] है। {{angbr|''g''<sub>1</sub>, ''g''<sub>2</sub>}} दो समूह अवयव की क्रमित युग्म को दर्शाता है। *' को + के स्वाभाविक रूप से प्रेरित जोड़ के रूप में देखा जा सकता है।]][[समूह सिद्धांत]] में, गणित की एक शाखा, विपरीत समूह दूसरे समूह से एक [[समूह (गणित)|समूह]] बनाने का एक प्रकार है जो किसी को [[समूह क्रिया (गणित)|बाईं क्रिया (गणित)]] के विशेष प्रकरण के रूप में दाहिनी क्रिया को परिभाषित करने की अनुमति देती है।


[[मोनोइड|एकाभ]], समूह, रिंग, और बीजगणित को एक ही वस्तु वाली [[श्रेणी (गणित)|श्रेणियों (गणित)]] के रूप में देखा जा सकता है। [[विपरीत श्रेणी]] का निर्माण विपरीत समूह, विपरीत रिंग आदि का सामान्यीकरण करता है।
[[मोनोइड|एकाभ]], समूह, रिंग, और बीजगणित को एक ही वस्तु वाली [[श्रेणी (गणित)|श्रेणियों (गणित)]] के रूप में देखा जा सकता है। [[विपरीत श्रेणी]] का निर्माण विपरीत समूह, विपरीत रिंग आदि का सामान्यीकरण करता है।

Revision as of 13:59, 14 July 2023

यह एक समूह से उसके विपरीत तक द्विआधारी संचालन का एक प्राकृतिक परिवर्तन है। ⟨g1, g2⟩ दो समूह अवयव की क्रमित युग्म को दर्शाता है। *' को + के स्वाभाविक रूप से प्रेरित जोड़ के रूप में देखा जा सकता है।

समूह सिद्धांत में, गणित की एक शाखा, विपरीत समूह दूसरे समूह से एक समूह बनाने का एक प्रकार है जो किसी को बाईं क्रिया (गणित) के विशेष प्रकरण के रूप में दाहिनी क्रिया को परिभाषित करने की अनुमति देती है।

एकाभ, समूह, रिंग, और बीजगणित को एक ही वस्तु वाली श्रेणियों (गणित) के रूप में देखा जा सकता है। विपरीत श्रेणी का निर्माण विपरीत समूह, विपरीत रिंग आदि का सामान्यीकरण करता है।

परिभाषा

मान लीजिए संचालन के अंतर्गत एक समूह है। के विपरीत समूह, जिसे कहा जाता है, के समान अंतर्निहित समुच्चय है, और इसके समूह संचालन को द्वारा परिभाषित किया गया है।

अगर एबेलियन है, तो यह इसके विपरीत समूह के समान है। साथ ही, प्रत्येक समूह (आवश्यक रूप से एबेलियन नहीं) अपने विपरीत समूह के लिए स्वाभाविक रूप से अपने विपरीत समूह के समरूपी है: एक समरूपता द्वारा दी जाती है। अधिक सामान्यतः, कोई भी एंटीऑटोमोर्फिज्म एक संगत समरूपता को के माध्यम से उन्नति देता है, क्योंकि

समूह क्रिया

मान लीजिए कि किसी श्रेणी में एक वस्तु है, और एक सही क्रिया है। तब एक बाईं क्रिया है जिसे , या द्वारा परिभाषित किया गया है।

यह भी देखें

  • विपरीत रिंग
  • विपरीत वर्ग

बाहरी संबंध