खंड अनुसार: Difference between revisions

From Vigyanwiki
(Text)
(Text)
Line 1: Line 1:
{{Short description|Function defined by multiple sub-functions}}
{{Short description|Function defined by multiple sub-functions}}
{{Refimprove|date=मार्च 2017}}
{{Refimprove|date=मार्च 2017}}
[[File:Piecewise linear function gnuplot.svg|thumb|280px|खंड अनुसार रैखिक फलन का प्लॉट <math>f(x) = \left\{ \begin{array}{lll} -3-x & \text{if} & x \leq -3 \\ x+3 & \text{if} & -3 \leq x \leq 0 \\ 3-2x & \text{if} & 0 \leq x \leq 3 \\ 0.5x - 4.5 & \text{if} & 3 \leq x \\ \end{array} \right.</math>]]गणित में, एक '''खंड अनुसार-परिभाषित फलन''' (जिसे '''खंड अनुसार फलन''', एक '''हाइब्रिड फलन''' या '''स्थितियों द्वारा परिभाषित''' भी कहा जाता है) कई उप-फलनों द्वारा परिभाषित एक फलन होता है, जहां प्रत्येक उप-फलन डोमेन में एक अलग अंतराल पर प्रयोग होता है।<ref>{{Cite web|title=टुकड़े-टुकड़े कार्य|url=https://www.mathsisfun.com/sets/functions-piecewise.html|access-date=2020-08-24|website=www.mathsisfun.com}}</ref><ref name=":0">{{Cite web|last=Weisstein|first=Eric W.|title=टुकड़े-टुकड़े कार्य|url=https://mathworld.wolfram.com/PiecewiseFunction.html|access-date=2020-08-24|website=mathworld.wolfram.com|language=en}}</ref><ref>{{Cite web|title=टुकड़े-टुकड़े कार्य|url=https://brilliant.org/wiki/piecewise-functions/|access-date=2020-09-29|website=brilliant.org}}</ref> खंडनुसार परिभाषा वास्तविकता में फलन की विशेषता के बजाय फलन को व्यक्त करने का एक तरीका है।
[[File:Piecewise linear function gnuplot.svg|thumb|280px|खंड अनुसार रैखिक फलन का प्लॉट <math>f(x) = \left\{ \begin{array}{lll} -3-x & \text{if} & x \leq -3 \\ x+3 & \text{if} & -3 \leq x \leq 0 \\ 3-2x & \text{if} & 0 \leq x \leq 3 \\ 0.5x - 4.5 & \text{if} & 3 \leq x \\ \end{array} \right.</math>]]गणित में, एक '''खंड अनुसार-परिभाषित फलन''' (जिसे '''खंड अनुसार फलन''', एक '''हाइब्रिड फलन''' या '''स्थितियों द्वारा परिभाषित''' भी कहा जाता है) कई अर्ध-फलनों द्वारा परिभाषित एक फलन होता है, जहां प्रत्येक अर्ध-फलन अनुक्षेत्र में एक अलग अंतराल पर प्रयोग होता है।<ref>{{Cite web|title=टुकड़े-टुकड़े कार्य|url=https://www.mathsisfun.com/sets/functions-piecewise.html|access-date=2020-08-24|website=www.mathsisfun.com}}</ref><ref name=":0">{{Cite web|last=Weisstein|first=Eric W.|title=टुकड़े-टुकड़े कार्य|url=https://mathworld.wolfram.com/PiecewiseFunction.html|access-date=2020-08-24|website=mathworld.wolfram.com|language=en}}</ref><ref>{{Cite web|title=टुकड़े-टुकड़े कार्य|url=https://brilliant.org/wiki/piecewise-functions/|access-date=2020-09-29|website=brilliant.org}}</ref> खंडनुसार परिभाषा वास्तविकता में फलन की विशेषता के बजाय फलन को व्यक्त करने का एक तरीका है।  


एक विशिष्ट, लेकिन संबंधित धारणा यह है कि किसी फलन की संपत्ति को खंडनुसार रखा जाता है, जिसका उपयोग तब किया जाता है जब डोमेन को अंतराल में विभाजन किया जा सकता है जिस पर संपत्ति होती है। उपरोक्त धारणा के विपरीत, यह वास्तव में फलन का ही एक गुण है। एक खंड अनुसार रैखिक फलन (जो निरंतर भी होता है) को एक उदाहरण के रूप में दर्शाया गया है।
एक विशिष्ट, लेकिन संबंधित धारणा यह है कि किसी फलन की संपत्ति को खंडनुसार रखा जाता है, जिसका उपयोग तब किया जाता है जब अनुक्षेत्र को अंतराल में विभाजन किया जा सकता है जिस पर संपत्ति होती है। उपरोक्त धारणा के विपरीत, यह वास्तव में फलन का ही एक गुण है। एक खंड अनुसार रैखिक फलन (जो निरंतर भी होता है) को एक उदाहरण के रूप में दर्शाया गया है।


== संकेतन और व्याख्या ==
== संकेतन और व्याख्या ==


[[Image:Absolute value.svg|thumb|280px|right|निरपेक्ष मान फलन का ग्राफ़, <math>y=|x|</math>]]खंड अनुसार फलनों को सामान्य कार्यात्मक संकेतन का उपयोग करके परिभाषित किया जा सकता है, जहां फलन का मुख्य भाग फलनों और संबंधित उपडोमेन की एक श्रृंखला है। इन उपडोमेन को एक साथ मिलकर किसी फलन के संपूर्ण डोमेन को आच्छादित करना चाहिए; प्रायः यह भी आवश्यक होता है कि वे जोड़ीवार असंयुक्त हों, यानी डोमेन का एक विभाजन बनाएं।<ref>A feasible weaker requirement is that all definitions agree on intersecting subdomains.</ref> समग्र फलन को <nowiki>''</nowiki>खंड अनुसार<nowiki>''</nowiki> कहे जाने के लिए, उपडोमेन को प्रायः अंतराल की आवश्यकता होती है (कुछ विकृत अंतराल हो सकते हैं, यानी एकल बिंदु या असीमित अंतराल)। परिबद्ध अंतरालों के लिए, उपडोमेन की संख्या सीमित होना आवश्यक होता है, असंबद्ध अंतरालों के लिए प्रायः केवल स्थानीय रूप से परिमित होना आवश्यक होता है। उदाहरण के लिए, निरपेक्ष मान फलन की खंड अनुसार परिभाषा पर विचार करें:<ref name=":0" />:<math display="block">|x| = \begin{cases}
[[Image:Absolute value.svg|thumb|280px|right|निरपेक्ष मान फलन का ग्राफ़, <math>y=|x|</math>]]खंड अनुसार फलनों को सामान्य कार्यात्मक संकेतन का उपयोग करके परिभाषित किया जा सकता है, जहां फलन का मुख्य भाग फलनों और संबंधित अर्धअनुक्षेत्र की एक श्रृंखला है। इन अर्धअनुक्षेत्र को एक साथ मिलकर किसी फलन के संपूर्ण अनुक्षेत्र को आच्छादित करना चाहिए; प्रायः यह भी आवश्यक होता है कि वे जोड़ीवार असंयुक्त हों, यानी अनुक्षेत्र का एक विभाजन बनाएं।<ref>A feasible weaker requirement is that all definitions agree on intersecting subdomains.</ref> समग्र फलन को <nowiki>''</nowiki>खंड अनुसार<nowiki>''</nowiki> कहे जाने के लिए, अर्धअनुक्षेत्र को प्रायः अंतराल की आवश्यकता होती है (कुछ विकृत अंतराल हो सकते हैं, यानी एकल बिंदु या असीमित अंतराल)। परिबद्ध अंतरालों के लिए, अर्धअनुक्षेत्र की संख्या सीमित होना आवश्यक होता है, असंबद्ध अंतरालों के लिए प्रायः केवल स्थानीय रूप से परिमित होना आवश्यक होता है। उदाहरण के लिए, निरपेक्ष मान फलन की खंड अनुसार परिभाषा पर विचार करें:<ref name=":0" />:<math display="block">|x| = \begin{cases}
   -x, & \text{if } x < 0 \\
   -x, & \text{if } x < 0 \\
   +x, & \text{if } x \ge 0 .
   +x, & \text{if } x \ge 0 .
\end{cases}
\end{cases}
</math>
</math>
शून्य से कम <math>x</math> के सभी मानों के लिए, पहले उप-फलन (<math>-x</math>) का उपयोग किया जाता है, जो इनपुट मान के चिह्न को नकार देता है, जिससे ऋणात्मक संख्याएँ धनात्मक हो जाती हैं। शून्य से अधिक या उसके बराबर <math>x</math> के सभी मानों के लिए, दूसरे उप-फलन {{nobr|(<math>x</math>)}} का उपयोग किया जाता है, जो इनपुट मान का तुच्छ मूल्यांकन करता है।
शून्य से कम <math>x</math> के सभी मानों के लिए, पहले अर्ध-फलन (<math>-x</math>) का उपयोग किया जाता है, जो इनपुट मान के चिह्न को नकार देता है, जिससे ऋणात्मक संख्याएँ धनात्मक हो जाती हैं। शून्य से अधिक या उसके बराबर <math>x</math> के सभी मानों के लिए, दूसरे अर्ध-फलन {{nobr|(<math>x</math>)}} का उपयोग किया जाता है, जो इनपुट मान का तुच्छ मूल्यांकन करता है।


निम्न तालिका <math>x</math> के कुछ मानों पर निरपेक्ष मान फलन का दस्तावेजीकरण करती है :
निम्न तालिका <math>x</math> के कुछ मानों पर निरपेक्ष मान फलन का दस्तावेजीकरण करती है :
Line 31: Line 31:
|-
|-
|}
|}
किसी दिए गए इनपुट मान पर खंड अनुसार-परिभाषित फलन का मूल्यांकन करने के लिए, सही उप-फलन का चयन करने और सही आउटपुट मान उत्पन्न करने के लिए उपयुक्त उपडोमेन को चुनने की आवश्यकता होती है।
किसी दिए गए इनपुट मान पर खंड अनुसार-परिभाषित फलन का मूल्यांकन करने के लिए, सही अर्ध-फलन का चयन करने और सही आउटपुट मान उत्पन्न करने के लिए उपयुक्त अर्धअनुक्षेत्र को चुनने की आवश्यकता होती है।


== खंड अनुसार-परिभाषित फलनों की निरंतरता और भिन्नता ==
== खंड अनुसार-परिभाषित फलनों की निरंतरता और भिन्नता ==


[[Image:Upper semi.svg|thumb|280px|खंड अनुसार-द्विघात फलन <math>f(x) = \left\{ \begin{array}{lll} x^2 & \text{if} & x < 0.707 \\ 1.5 - (x - 1.414)^2 & \text{if} & 0.707 \leq x \\ \end{array} \right.</math>का प्लॉट, इसकी एकमात्र असंततता <math>x_0 = 0.707</math> पर है।]]यदि निम्नलिखित स्थितियां पूरी होती हैं तो एक खंड अनुसार-परिभाषित फलन अपने डोमेन में दिए गए अंतराल पर निरंतर  होता है:
[[Image:Upper semi.svg|thumb|280px|खंड अनुसार-द्विघात फलन <math>f(x) = \left\{ \begin{array}{lll} x^2 & \text{if} & x < 0.707 \\ 1.5 - (x - 1.414)^2 & \text{if} & 0.707 \leq x \\ \end{array} \right.</math>का प्लॉट, इसकी एकमात्र असंततता <math>x_0 = 0.707</math> पर है।]]यदि निम्नलिखित स्थितियां पूरी होती हैं तो एक खंड अनुसार-परिभाषित फलन अपने अनुक्षेत्र में दिए गए अंतराल पर निरंतर  होता है:
* इसके उप-फलन संबंधित अंतरालों (उपडोमेन) पर निरंतर होते हैं,
* इसके अर्ध-फलन संबंधित अंतरालों (अर्धअनुक्षेत्र) पर निरंतर होते हैं,
* उस अंतराल के भीतर किसी भी उपडोमेन के अंतिम बिंदु पर कोई अनिरंतरता नहीं है।
* उस अंतराल के भीतर किसी भी अर्धअनुक्षेत्र के अंतिम बिंदु पर कोई अनिरंतरता नहीं है।


उदाहरण के लिए, चित्रित फलन अपने उपडोमेन में खंड अनुसार-निरंतर है, लेकिन पूरे डोमेन पर निरंतर नहीं है, क्योंकि इसमें <math>x_0</math> पर जंप असंततता सम्मिलित है। संपूरित वृत्त इंगित करता है कि इस स्थिति में सही उप-फलन का मान उपयोग किया गया है।
उदाहरण के लिए, चित्रित फलन अपने अर्धअनुक्षेत्र में खंड अनुसार-निरंतर है, लेकिन पूरे अनुक्षेत्र पर निरंतर नहीं है, क्योंकि इसमें <math>x_0</math> पर जंप असंततता सम्मिलित है। संपूरित वृत्त इंगित करता है कि इस स्थिति में सही अर्ध-फलन का मान उपयोग किया गया है।


अपने डोमेन में किसी दिए गए अंतराल पर खंड अनुसार-परिभाषित फलन को अलग करने के लिए, उपरोक्त निरंतरता के अलावा निम्नलिखित स्थितियों को पूरा करना होगा:
अपने अनुक्षेत्र में किसी दिए गए अंतराल पर खंड अनुसार-परिभाषित फलन को अलग करने के लिए, उपरोक्त निरंतरता के अलावा निम्नलिखित स्थितियों को पूरा करना होगा:
* इसके उप-फलन संगत ''खुले'' अंतरालों पर भिन्न होते हैं,
* इसके अर्ध-फलन संगत ''संवृत'' अंतरालों पर भिन्न होते हैं,
* एकतरफ़ा व्युत्पन्न सभी अंतरालों के अंतिम बिंदुओं पर निहित होते हैं,
* एकतरफ़ा व्युत्पन्न सभी अंतरालों के अंतिम बिंदुओं पर निहित होते हैं,
* उन बिंदुओं पर जहां दो उपअंतराल स्पर्श करते हैं, दो निकटस्थ उपअंतराल के संबंधित एकतरफा व्युत्पन्न मेल खाते हैं।
* उन बिंदुओं पर जहां दो उपअंतराल स्पर्श करते हैं, दो निकटस्थ उपअंतराल के संबंधित एकतरफा व्युत्पन्न मेल खाते हैं।
Line 48: Line 48:
== अनुप्रयोग ==
== अनुप्रयोग ==


व्यावहारिक गणितीय विश्लेषण में, <nowiki>''</nowiki>खंड अनुसार-नियमित<nowiki>''</nowiki> फलनों को मानव दृश्य प्रणाली के कई मॉडलों के अनुरूप पाया गया है, जहां छवियों को पहले चरण में किनारों से अलग किए गए चिकने क्षेत्रों से युक्त माना जाता है।<ref>{{cite journal |title = शिरलेट्स का परिचय|first1 = Gitta |last1 = Kutyniok|author1-link=Gitta Kutyniok |first2 = Demetrio |last2 = Labate |journal = Shearlets |pages = 1–38 |year = 2012 |publisher = [[Birkhäuser]] |url = https://www.math.uh.edu/~dlabate/SHBookIntro.pdf }} Here: p.8</ref> विशेष रूप से, 2डी और 3डी में इस मॉडल वर्ग के विरल सन्निकटन प्रदान करने के लिए [[शिरलेट|शिरलेट्स]] का उपयोग एक प्रतिनिधित्व प्रणाली के रूप में किया गया है।
व्यावहारिक गणितीय विश्लेषण में, <nowiki>''</nowiki>खंड अनुसार-नियमित<nowiki>''</nowiki> फलनों को मानव दृश्य प्रणाली के कई मॉडलों के अनुरूप पाया गया है, जहां छवियों को पहले चरण में किनारों से अलग किए गए स्मूथ क्षेत्रों से युक्त माना जाता है।<ref>{{cite journal |title = शिरलेट्स का परिचय|first1 = Gitta |last1 = Kutyniok|author1-link=Gitta Kutyniok |first2 = Demetrio |last2 = Labate |journal = Shearlets |pages = 1–38 |year = 2012 |publisher = [[Birkhäuser]] |url = https://www.math.uh.edu/~dlabate/SHBookIntro.pdf }} Here: p.8</ref> विशेष रूप से, 2डी और 3डी में इस मॉडल वर्ग के विरल सन्निकटन प्रदान करने के लिए [[शिरलेट|शिरलेट्स]] का उपयोग एक प्रतिनिधित्व प्रणाली के रूप में किया गया है।


== सामान्य उदाहरण ==
== सामान्य उदाहरण ==


* खंड अनुसार रैखिक फलन, रेखा खंडों से बना एक फलन
* खंड अनुसार रैखिक फलन, रेखा खंडों से बना एक फलन
** [[समारोह की ओर कदम बढ़ाएं|चरण फ़ंक्शन]], निरंतर उप-फलन से बना एक फलन
** [[समारोह की ओर कदम बढ़ाएं|चरण फ़ंक्शन]], निरंतर अर्ध-फलन से बना एक फलन
*** [[बॉक्सकार फ़ंक्शन|बॉक्सकार फलन]],
*** [[बॉक्सकार फ़ंक्शन|बॉक्सकार फलन]],
*** [[हेविसाइड स्टेप फ़ंक्शन|हेविसाइड स्टेप फलन]]<ref name=":0" />
*** [[हेविसाइड स्टेप फ़ंक्शन|हेविसाइड स्टेप फलन]]<ref name=":0" />
Line 59: Line 59:
** निरपेक्ष मान<ref name=":0" />
** निरपेक्ष मान<ref name=":0" />
**[[त्रिकोणीय कार्य|त्रिकोणीय फलन]]  
**[[त्रिकोणीय कार्य|त्रिकोणीय फलन]]  
* खंडित शक्ति नियम, शक्ति-नियम उप-फलनों से बना एक फलन
* खंडित शक्ति नियम, शक्ति-नियम अर्ध -फलनों से बना एक फलन
* [[बी-पट्टी]] (गणित), बहुपद उप-फलनों से बना एक फलन, जिसमें उन स्थानों पर उच्च स्तर की स्मूथनेस होती है जहां बहुपद के खंड जुड़ते हैं
* [[बी-पट्टी]] (गणित), बहुपद अर्ध -फलनों से बना एक फलन, जिसमें उन समष्टियों पर उच्च स्तर की स्मूथनेस होती है जहां बहुपद के खंड जुड़ते हैं
** बी-स्प्लाइन  
** बी-स्प्लाइन  
* [[पीडीआईएफएफ]]
* [[पीडीआईएफएफ]]

Revision as of 14:40, 17 July 2023

खंड अनुसार रैखिक फलन का प्लॉट

गणित में, एक खंड अनुसार-परिभाषित फलन (जिसे खंड अनुसार फलन, एक हाइब्रिड फलन या स्थितियों द्वारा परिभाषित भी कहा जाता है) कई अर्ध-फलनों द्वारा परिभाषित एक फलन होता है, जहां प्रत्येक अर्ध-फलन अनुक्षेत्र में एक अलग अंतराल पर प्रयोग होता है।[1][2][3] खंडनुसार परिभाषा वास्तविकता में फलन की विशेषता के बजाय फलन को व्यक्त करने का एक तरीका है।

एक विशिष्ट, लेकिन संबंधित धारणा यह है कि किसी फलन की संपत्ति को खंडनुसार रखा जाता है, जिसका उपयोग तब किया जाता है जब अनुक्षेत्र को अंतराल में विभाजन किया जा सकता है जिस पर संपत्ति होती है। उपरोक्त धारणा के विपरीत, यह वास्तव में फलन का ही एक गुण है। एक खंड अनुसार रैखिक फलन (जो निरंतर भी होता है) को एक उदाहरण के रूप में दर्शाया गया है।

संकेतन और व्याख्या

निरपेक्ष मान फलन का ग्राफ़,

खंड अनुसार फलनों को सामान्य कार्यात्मक संकेतन का उपयोग करके परिभाषित किया जा सकता है, जहां फलन का मुख्य भाग फलनों और संबंधित अर्धअनुक्षेत्र की एक श्रृंखला है। इन अर्धअनुक्षेत्र को एक साथ मिलकर किसी फलन के संपूर्ण अनुक्षेत्र को आच्छादित करना चाहिए; प्रायः यह भी आवश्यक होता है कि वे जोड़ीवार असंयुक्त हों, यानी अनुक्षेत्र का एक विभाजन बनाएं।[4] समग्र फलन को ''खंड अनुसार'' कहे जाने के लिए, अर्धअनुक्षेत्र को प्रायः अंतराल की आवश्यकता होती है (कुछ विकृत अंतराल हो सकते हैं, यानी एकल बिंदु या असीमित अंतराल)। परिबद्ध अंतरालों के लिए, अर्धअनुक्षेत्र की संख्या सीमित होना आवश्यक होता है, असंबद्ध अंतरालों के लिए प्रायः केवल स्थानीय रूप से परिमित होना आवश्यक होता है। उदाहरण के लिए, निरपेक्ष मान फलन की खंड अनुसार परिभाषा पर विचार करें:[2]:

शून्य से कम के सभी मानों के लिए, पहले अर्ध-फलन () का उपयोग किया जाता है, जो इनपुट मान के चिह्न को नकार देता है, जिससे ऋणात्मक संख्याएँ धनात्मक हो जाती हैं। शून्य से अधिक या उसके बराबर के सभी मानों के लिए, दूसरे अर्ध-फलन () का उपयोग किया जाता है, जो इनपुट मान का तुच्छ मूल्यांकन करता है।

निम्न तालिका के कुछ मानों पर निरपेक्ष मान फलन का दस्तावेजीकरण करती है :

x f(x) Sub-function used
−3 3
−0.1 0.1
0 0
1/2 1/2
5 5

किसी दिए गए इनपुट मान पर खंड अनुसार-परिभाषित फलन का मूल्यांकन करने के लिए, सही अर्ध-फलन का चयन करने और सही आउटपुट मान उत्पन्न करने के लिए उपयुक्त अर्धअनुक्षेत्र को चुनने की आवश्यकता होती है।

खंड अनुसार-परिभाषित फलनों की निरंतरता और भिन्नता

खंड अनुसार-द्विघात फलन का प्लॉट, इसकी एकमात्र असंततता पर है।

यदि निम्नलिखित स्थितियां पूरी होती हैं तो एक खंड अनुसार-परिभाषित फलन अपने अनुक्षेत्र में दिए गए अंतराल पर निरंतर होता है:

  • इसके अर्ध-फलन संबंधित अंतरालों (अर्धअनुक्षेत्र) पर निरंतर होते हैं,
  • उस अंतराल के भीतर किसी भी अर्धअनुक्षेत्र के अंतिम बिंदु पर कोई अनिरंतरता नहीं है।

उदाहरण के लिए, चित्रित फलन अपने अर्धअनुक्षेत्र में खंड अनुसार-निरंतर है, लेकिन पूरे अनुक्षेत्र पर निरंतर नहीं है, क्योंकि इसमें पर जंप असंततता सम्मिलित है। संपूरित वृत्त इंगित करता है कि इस स्थिति में सही अर्ध-फलन का मान उपयोग किया गया है।

अपने अनुक्षेत्र में किसी दिए गए अंतराल पर खंड अनुसार-परिभाषित फलन को अलग करने के लिए, उपरोक्त निरंतरता के अलावा निम्नलिखित स्थितियों को पूरा करना होगा:

  • इसके अर्ध-फलन संगत संवृत अंतरालों पर भिन्न होते हैं,
  • एकतरफ़ा व्युत्पन्न सभी अंतरालों के अंतिम बिंदुओं पर निहित होते हैं,
  • उन बिंदुओं पर जहां दो उपअंतराल स्पर्श करते हैं, दो निकटस्थ उपअंतराल के संबंधित एकतरफा व्युत्पन्न मेल खाते हैं।

अनुप्रयोग

व्यावहारिक गणितीय विश्लेषण में, ''खंड अनुसार-नियमित'' फलनों को मानव दृश्य प्रणाली के कई मॉडलों के अनुरूप पाया गया है, जहां छवियों को पहले चरण में किनारों से अलग किए गए स्मूथ क्षेत्रों से युक्त माना जाता है।[5] विशेष रूप से, 2डी और 3डी में इस मॉडल वर्ग के विरल सन्निकटन प्रदान करने के लिए शिरलेट्स का उपयोग एक प्रतिनिधित्व प्रणाली के रूप में किया गया है।

सामान्य उदाहरण

  • खंड अनुसार रैखिक फलन, रेखा खंडों से बना एक फलन
  • खंडित शक्ति नियम, शक्ति-नियम अर्ध -फलनों से बना एक फलन
  • बी-पट्टी (गणित), बहुपद अर्ध -फलनों से बना एक फलन, जिसमें उन समष्टियों पर उच्च स्तर की स्मूथनेस होती है जहां बहुपद के खंड जुड़ते हैं
    • बी-स्प्लाइन
  • पीडीआईएफएफ
  • और कुछ अन्य सामान्य बम्प फलन। ये असीम रूप से भिन्न हैं, लेकिन विश्लेषणात्मकता केवल खंडों में ही कायम रहती है।
  • वास्तविकताओं में निरंतर फलनों को सीमित या समान रूप से निरंतर होने की आवश्यकता नहीं है, लेकिन वे हमेशा खंड अनुसार बंधे होते हैं और खंड अनुसार समान रूप से निरंतर होते हैं।

यह भी देखें

संदर्भ

  1. "टुकड़े-टुकड़े कार्य". www.mathsisfun.com. Retrieved 2020-08-24.
  2. 2.0 2.1 2.2 2.3 Weisstein, Eric W. "टुकड़े-टुकड़े कार्य". mathworld.wolfram.com (in English). Retrieved 2020-08-24.
  3. "टुकड़े-टुकड़े कार्य". brilliant.org. Retrieved 2020-09-29.
  4. A feasible weaker requirement is that all definitions agree on intersecting subdomains.
  5. Kutyniok, Gitta; Labate, Demetrio (2012). "शिरलेट्स का परिचय" (PDF). Shearlets. Birkhäuser: 1–38. Here: p.8