समनिरंतरता: Difference between revisions
(text) |
(Text) |
||
Line 1: | Line 1: | ||
{{Short description|Relation among continuous functions}} | {{Short description|Relation among continuous functions}} | ||
[[गणितीय विश्लेषण]] में, यदि सभी फलन सतत फलन हैं और यहां वर्णित सटीक अर्थ में, किसी दिए गए [[पड़ोस (गणित)|सामीप्य]] पर उनमें समान भिन्नता है, तो फलनों का एक | [[गणितीय विश्लेषण]] में, यदि सभी फलन सतत फलन हैं और यहां वर्णित सटीक अर्थ में, किसी दिए गए [[पड़ोस (गणित)|सामीप्य]] पर उनमें समान भिन्नता है, तो फलनों का एक समूह '''समनिरंतर''' होता है।विशेष रूप से, यह अवधारणा गणनीय सेट समूहों और इस प्रकार फलनों के ''अनुक्रमों'' पर अनप्रयुक्त होती है। | ||
एस्कोली के प्रमेय के निर्माण में समनिरंतरता दिखाई देती है, जिसमें कहा गया है कि ''C''(''X'') का एक उपसमुच्चय, एक सघन हॉसडॉर्फ स्पेस ''X'' पर सतत फलनों का स्थान, सघन है यदि और केवल यदि यह बंद है, बिंदुवार घिरा हुआ है और समनिरंतर है। एक उपप्रमेय के रूप में, ''C''(''X'') में एक अनुक्रम समान रूप से अभिसरण होता है यदि और केवल यदि यह समनिरंतर है और बिंदुवार रूप से एक फलन में अभिसरण करता है (जरूरी नहीं कि संतत एक-प्राथमिकता हो)। विशेष रूप से, मीट्रिक स्थान पर या स्थानीय रूप से सतत स्थान पर<ref>More generally, on any [[compactly generated space]]; e.g., a [[first-countable space]].</ref> सतत फलनों ''f<sub>n</sub>'' के एक समनिरंतर बिंदुवार अभिसरण अनुक्रम की सीमा या तो सतत है। यदि, इसके अतिरिक्त, ''f<sub>n</sub>''[[ होलोमार्फिक | होलोमार्फिक]] हैं, तो सीमा भी होलोमोर्फिक है। | एस्कोली के प्रमेय के निर्माण में समनिरंतरता दिखाई देती है, जिसमें कहा गया है कि ''C''(''X'') का एक उपसमुच्चय, एक सघन(कॉम्पैक्ट) हॉसडॉर्फ स्पेस ''X'' पर सतत फलनों का स्थान, सघन है यदि और केवल यदि यह बंद है, बिंदुवार घिरा हुआ है और समनिरंतर है। एक उपप्रमेय के रूप में, ''C''(''X'') में एक अनुक्रम समान रूप से अभिसरण होता है यदि और केवल यदि यह समनिरंतर है और बिंदुवार रूप से एक फलन में अभिसरण करता है (जरूरी नहीं कि संतत एक-प्राथमिकता हो)। विशेष रूप से, मीट्रिक स्थान पर या स्थानीय रूप से सतत स्थान पर<ref>More generally, on any [[compactly generated space]]; e.g., a [[first-countable space]].</ref> सतत फलनों ''f<sub>n</sub>'' के एक समनिरंतर बिंदुवार अभिसरण अनुक्रम की सीमा या तो सतत है। यदि, इसके अतिरिक्त, ''f<sub>n</sub>''[[ होलोमार्फिक | होलोमार्फिक]] हैं, तो सीमा भी होलोमोर्फिक है। | ||
एकसमान सीमाबद्धता सिद्धांत बताता है कि बानाच स्थानों के बीच सतत रैखिक ऑपरेटरों का एक बिंदुवार बंधा हुआ | एकसमान सीमाबद्धता सिद्धांत बताता है कि बानाच स्थानों के बीच सतत रैखिक ऑपरेटरों का एक बिंदुवार बंधा हुआ समूह समनिरंतर है।{{sfn|Rudin|1991|p=44 §2.5}} | ||
==[[मीट्रिक स्थान|मीट्रिक स्थानों]] के बीच समनिरंतरता == | ==[[मीट्रिक स्थान|मीट्रिक स्थानों]] के बीच समनिरंतरता == | ||
मान लीजिए कि ''X'' और ''Y'' दो मीट्रिक स्थान हैं, और ''F, X'' से ''Y'' तक फलनों का एक | मान लीजिए कि ''X'' और ''Y'' दो मीट्रिक स्थान हैं, और ''F, X'' से ''Y'' तक फलनों का एक समूह है। हम इन स्थानों के संबंधित मैट्रिक्स को ''d'' द्वारा निरूपित करेंगे। | ||
समूह F एक x<sub>0</sub>∈ X '''बिंदु पर समसतत्''' है यदि प्रत्येक ε > 0 के लिए, एक δ > 0 निहित है जैसे कि d(ƒ(x)<sub>0</sub>), ''ƒ''(x)) < ε सभी ''ƒ'' ∈ F के लिए और सभी x जैसे कि d(x)<sub>0</sub>, x) < δ है। यदि समूह X के प्रत्येक बिंदु पर समसंतत है, तो वह '''बिंदुवार समसंतत''' है।<ref name=RS29>{{harvtxt|Reed|Simon|1980}}, p. 29; {{harvtxt|Rudin|1987}}, p. 245</ref> | |||
समूह F '''समान रूप से समनिरंतर''' है यदि प्रत्येक ε > 0 के लिए, एक δ > 0 निहित है जैसे कि d(ƒ(x)<sub>1</sub>), ''ƒ''(x<sub>2</sub>)) < ε सभी ƒ ∈ F और सभी x<sub>1</sub>, x<sub>2</sub>के लिए,∈ X जैसे कि d(x<sub>1</sub>, x<sub>2</sub>) <δ है।<ref>{{harvtxt|Reed|Simon|1980}}, p. 29</ref> | |||
तुलना के लिए, कथन ''F'' में सभी फलन सतत हैं' का अर्थ है कि प्रत्येक ε > 0, प्रत्येक ''ƒ'' ∈ F, और प्रत्येक x<sub>0</sub> ∈ X के लिए, वहाँ एक δ > 0 निहित है जैसे कि d(ƒ(x<sub>0</sub>), ƒ(x)) < ε सभी x ∈ X के लिए जैसे कि d(x<sub>0</sub>, x) < δ है। | तुलना के लिए, कथन ''F'' में सभी फलन सतत हैं' का अर्थ है कि प्रत्येक ε > 0, प्रत्येक ''ƒ'' ∈ F, और प्रत्येक x<sub>0</sub> ∈ X के लिए, वहाँ एक δ > 0 निहित है जैसे कि d(ƒ(x<sub>0</sub>), ƒ(x)) < ε सभी x ∈ X के लिए जैसे कि d(x<sub>0</sub>, x) < δ है। | ||
Line 33: | Line 33: | ||
*एक सामान्य [[लिप्सचिट्ज़ स्थिरांक]] के साथ फलनों का एक समुच्चय (समान रूप से) समनिरंतर है। विशेष रूप से, यह स्थिति है यदि समुच्चय में समान स्थिरांक से घिरे व्युत्पन्न फलन होते हैं। | *एक सामान्य [[लिप्सचिट्ज़ स्थिरांक]] के साथ फलनों का एक समुच्चय (समान रूप से) समनिरंतर है। विशेष रूप से, यह स्थिति है यदि समुच्चय में समान स्थिरांक से घिरे व्युत्पन्न फलन होते हैं। | ||
*समान सीमाबद्धता सिद्धांत निरंतर रैखिक ऑपरेटरों के एक समुच्चय के लिए समनिरंतर होने के लिए पर्याप्त परिस्थिति देता है। | *समान सीमाबद्धता सिद्धांत निरंतर रैखिक ऑपरेटरों के एक समुच्चय के लिए समनिरंतर होने के लिए पर्याप्त परिस्थिति देता है। | ||
*विश्लेषणात्मक फलन के पुनरावृत्तों का एक | *विश्लेषणात्मक फलन के पुनरावृत्तों का एक समूह[[ फ़तौ सेट | फ़तौ समुच्चय]] पर समनिरंतर है।<ref>Alan F. Beardon, S. Axler, F.W. Gehring, K.A. Ribet : Iteration of Rational Functions: Complex Analytic Dynamical Systems. Springer, 2000; {{ISBN|0-387-95151-2}}, {{ISBN|978-0-387-95151-5}}; page 49</ref><ref>Joseph H. Silverman : The arithmetic of dynamical systems. Springer, 2007. {{ISBN|0-387-69903-1}}, {{ISBN|978-0-387-69903-5}}; page 22</ref> | ||
===प्रतिउदाहरण === | ===प्रतिउदाहरण === | ||
Line 42: | Line 42: | ||
मान लीजिए कि {{mvar|T}} एक सांस्थितिक स्पेस है और {{mvar|Y}} एक योज्य [[टोपोलॉजिकल समूह|सांस्थितिक समूह]] है (यानी एक [[समूह (बीजगणित)|समूह]] एक टोपोलॉजी से संपन्न है जो इसके संचालन को निरंतर बनाता है)। सांस्थितिक वेक्टर स्पेस सांस्थितिक समूहों के प्रमुख उदाहरण हैं और प्रत्येक सांस्थितिक समूह में एक संबद्ध विहित [[एकसमान स्थान|एकरूपता]] होती है। | मान लीजिए कि {{mvar|T}} एक सांस्थितिक स्पेस है और {{mvar|Y}} एक योज्य [[टोपोलॉजिकल समूह|सांस्थितिक समूह]] है (यानी एक [[समूह (बीजगणित)|समूह]] एक टोपोलॉजी से संपन्न है जो इसके संचालन को निरंतर बनाता है)। सांस्थितिक वेक्टर स्पेस सांस्थितिक समूहों के प्रमुख उदाहरण हैं और प्रत्येक सांस्थितिक समूह में एक संबद्ध विहित [[एकसमान स्थान|एकरूपता]] होती है। | ||
:'''परिभाषा''':{{sfn | Narici|Beckenstein | 2011 | pp=133-136}} {{mvar|T}} से {{mvar|Y}} तक के मानचित्रों के एक | :'''परिभाषा''':{{sfn | Narici|Beckenstein | 2011 | pp=133-136}} {{mvar|T}} से {{mvar|Y}} तक के मानचित्रों के एक समूह {{mvar|H}} को {{math|''t'' ∈ ''T''}} '''पर समसतत्''' कहा जाता है यदि {{mvar|Y}} में {{mvar|0}} के प्रत्येक सामीप्य {{mvar|V}} के लिए {{mvar|T}} में {{mvar|t}} के कुछ सामीप्य {{mvar|U}} निहित जैसे कि प्रत्येक {{math|''h'' ∈ ''H''}} के लिए {{math|''h''(''U'') ⊆ ''h''(''t'') + ''V''}} है। हम कहते हैं कि {{mvar|H}} '''समसतत्''' है यदि यह {{mvar|T}} के प्रत्येक बिंदु पर समसतत् है। | ||
ध्यान दें कि यदि {{mvar|H}} एक बिंदु पर समसतत् है {{mvar|H}} में प्रत्येक मानचित्र बिंदु पर सतत है। स्पष्टतः, {{mvar|T}} से {{mvar|Y}} तक सतत मानचित्रों का प्रत्येक परिमित समुच्चय समसतत् है। | ध्यान दें कि यदि {{mvar|H}} एक बिंदु पर समसतत् है {{mvar|H}} में प्रत्येक मानचित्र बिंदु पर सतत है। स्पष्टतः, {{mvar|T}} से {{mvar|Y}} तक सतत मानचित्रों का प्रत्येक परिमित समुच्चय समसतत् है। | ||
==समसतत् रैखिक मानचित्र== | ==समसतत् रैखिक मानचित्र== | ||
क्योंकि प्रत्येक टोपोलॉजिकल वेक्टर स्पेस (टीवीएस) एक सांस्थितिक समूह है, इसलिए सांस्थितिक समूहों के लिए दिए गए मानचित्रों के एक समनिरंतर | क्योंकि प्रत्येक टोपोलॉजिकल वेक्टर स्पेस (टीवीएस) एक सांस्थितिक समूह है, इसलिए सांस्थितिक समूहों के लिए दिए गए मानचित्रों के एक समनिरंतर समूह की परिभाषा बिना किसी बदलाव के टीवीएस में स्थानांतरित हो जाती है। | ||
===समसतत् रैखिक मानचित्रों का लक्षण वर्णन=== | ===समसतत् रैखिक मानचित्रों का लक्षण वर्णन=== | ||
दो सांस्थितिक वेक्टर स्पेस के बीच फॉर्म <math>X \to Y</math> के मानचित्रों के एक | दो सांस्थितिक वेक्टर स्पेस के बीच फॉर्म <math>X \to Y</math> के मानचित्रों के एक समूह <math>H</math> को एक बिंदु <math>x \in X</math> पर समनिरंतर कहा जाता है यदि <math>Y</math> में मूल के प्रत्येक सामीप्य <math>V</math> के लिए <math>X</math> में मूल के कुछ सामीप्य <math>U</math> निहित हैं जैसे कि <math>h(x + U) \subseteq h(x) + V</math> सभी <math>h \in H</math> के लिए है। | ||
यदि <math>H</math> मानचित्रों का एक | यदि <math>H</math> मानचित्रों का एक समूह है और <math>U</math> एक समुच्चय है तो मान लीजिए <math>H(U) := \bigcup_{h \in H} h(U)</math> है। संकेतन के साथ, यदि <math>U</math> और <math>V</math> तो समुच्चय हैं तो सभी <math>h \in H</math> के लिए <math>h(U) \subseteq V</math> यदि केवल <math>H(U) \subseteq V</math> है। | ||
मान लीजिए कि <math>X</math> और <math>Y</math> सांस्थितिक वेक्टर स्पेस (टीवीएस) हैं <math>H</math> <math>X</math> से <math>Y</math> तक रैखिक ऑपरेटरों का एक | मान लीजिए कि <math>X</math> और <math>Y</math> सांस्थितिक वेक्टर स्पेस (टीवीएस) हैं <math>H</math> <math>X</math> से <math>Y</math> तक रैखिक ऑपरेटरों का एक समूह है। उसके बाद निम्न बराबर हैं: | ||
<ol> | <ol> | ||
<li> <math>H</math> समसतत् है।<li> | <li> <math>H</math> समसतत् है।<li> | ||
Line 98: | Line 98: | ||
====समनिरंतर रैखिक '''समसतत्''' का लक्षण वर्णन==== | ====समनिरंतर रैखिक '''समसतत्''' का लक्षण वर्णन==== | ||
मान लीजिए कि <math>X</math> निरंतर दोहरे स्थान <math>X^{\prime}</math> के साथ फ़ील्ड <math>\mathbb{F}</math> पर एक टोपोलॉजिकल वेक्टर स्पेस (टीवीएस) है। <math>X</math> पर रैखिक कार्यात्मकताओं के एक | मान लीजिए कि <math>X</math> निरंतर दोहरे स्थान <math>X^{\prime}</math> के साथ फ़ील्ड <math>\mathbb{F}</math> पर एक टोपोलॉजिकल वेक्टर स्पेस (टीवीएस) है। <math>X</math> पर रैखिक कार्यात्मकताओं के एक समूह <math>H</math> को ''एक बिंदु'' <math>x \in X</math> पर समसतत् कहा जाता है यदि <math>\mathbb{F}</math> में मूल के प्रत्येक सामीप्य <math>V</math> के लिए <math>X</math> में मूल के कुछ सामीप्य <math>U</math> निहित हैं। ऐसा कि सभी <math>h \in H</math> के लिए <math>h(x + U) \subseteq h(x) + V</math> सभी के लिए है। | ||
किसी भी उपसमुच्चय <math>H \subseteq X^{\prime}</math> के लिए, निम्नलिखित समतुल्य हैं:{{sfn|Narici|Beckenstein|2011|pp=225-273}} | किसी भी उपसमुच्चय <math>H \subseteq X^{\prime}</math> के लिए, निम्नलिखित समतुल्य हैं:{{sfn|Narici|Beckenstein|2011|pp=225-273}} | ||
Line 120: | Line 120: | ||
जबकि यदि <math>X</math> एक बैरल वाला स्थान है तो इस सूची को इसमें सम्मिलित करने के लिए बढ़ाया जा सकता है: | जबकि यदि <math>X</math> एक बैरल वाला स्थान है तो इस सूची को इसमें सम्मिलित करने के लिए बढ़ाया जा सकता है: | ||
<ol start="11"> | <ol start="11"> | ||
<li> <math> | <li> <math>X^{\prime}</math> [[कमज़ोर* टोपोलॉजी]] में <math>H</math> अपेक्षाकृत सघन है। {{sfn|Trèves|2006|pp=346-350}}</li> | ||
<li> <math>H</math> कमजोर* | <li> <math>H</math> कमजोर* परिबद्ध है (अर्थात्, <math>H</math>, <math>\sigma\left(X^{\prime}, X\right)-</math><math>X^{\prime}</math> में परिबद्ध है।)</li>{{sfn|Trèves|2006|pp=346-350}} | ||
<li> <math>H</math> परिबद्ध अभिसरण की टोपोलॉजी में | <li> <math>H</math> परिबद्ध अभिसरण की टोपोलॉजी में परिबद्ध है (अर्थात्, <math>H</math> <math>b\left(X^{\prime}, X\right)-</math> <math>X^{\prime}</math> में परिबद्ध है।){{sfn|Trèves|2006|pp=346-350}}</li> | ||
</ol> | </ol> | ||
Line 138: | Line 138: | ||
===समसतत् रैखिक मानचित्रों के गुण=== | ===समसतत् रैखिक मानचित्रों के गुण=== | ||
एकसमान सीमा सिद्धांत (जिसे बानाच-स्टाइनहॉस प्रमेय के रूप में भी जाना जाता है) | एकसमान सीमा सिद्धांत (जिसे बानाच-स्टाइनहॉस प्रमेय के रूप में भी जाना जाता है) में कहा गया है कि बानाच स्थानों के बीच रैखिक मानचित्रों का एक सेट <math>H</math> समनिरंतर है यदि यह बिंदुवार घिरा हुआ है; अर्थात्, प्रत्येक <math>x \in X</math> के लिए <math>\sup_{h \in H} \|h(x)\| < \infty</math> है। परिणाम को ऐसे स्थिति में सामान्यीकृत किया जा सकता है जब <math>Y</math> स्थानीय रूप से उत्तल हो और <math>X</math> एक बैरल वाला स्थान हो।{{sfn|Schaefer|1966|loc= Theorem 4.2}} | ||
====समसतत् रैखिक कार्यात्मकताओं के गुण==== | ====समसतत् रैखिक कार्यात्मकताओं के गुण==== | ||
अलाओग्लू के प्रमेय का तात्पर्य है कि | अलाओग्लू के प्रमेय का तात्पर्य है कि <math>X^{\prime}</math> एक समनिरंतर उपसमुच्चय का कमजोर-* बंद होना कमज़ोर है-* सघन; इस प्रकार प्रत्येक समनिरंतर उपसमुच्चय कमजोर-* अपेक्षाकृत सघन होता है।{{sfn|Schaefer|1966|loc= Corollary 4.3}}{{sfn|Narici|Beckenstein|2011|pp=225-273}} | ||
अगर <math>X</math> यदि कोई स्थानीय रूप से उत्तल टीवीएस है, तो सभी बैरल वाले स्थानों का | अगर <math>X</math> यदि कोई स्थानीय रूप से उत्तल टीवीएस है, तो सभी बैरल वाले स्थानों का समूह <math>X</math> और सभी उपसमूहों का समूह <math>X^{\prime}</math> जो उत्तल, संतुलित, बंद और घिरे हुए हैं <math>X^{\prime}_{\sigma},</math> ध्रुवता द्वारा एक दूसरे से मेल खाते हैं (के संबंध में)। <math>\left\langle X, X^{\#} \right\rangle</math>).{{sfn|Schaefer|Wolff|1999|pp=123–128}} | ||
यह इस प्रकार है कि एक स्थानीय रूप से उत्तल टी.वी.एस <math>X</math> वर्जित है यदि और केवल यदि प्रत्येक परिबद्ध उपसमुच्चय <math>X^{\prime}_{\sigma}</math> समनिरंतर है.{{sfn|Schaefer|Wolff|1999|pp=123–128}} | यह इस प्रकार है कि एक स्थानीय रूप से उत्तल टी.वी.एस <math>X</math> वर्जित है यदि और केवल यदि प्रत्येक परिबद्ध उपसमुच्चय <math>X^{\prime}_{\sigma}</math> समनिरंतर है.{{sfn|Schaefer|Wolff|1999|pp=123–128}} | ||
Line 193: | Line 193: | ||
===सामयिक स्थानों में समनिरंतरता=== | ===सामयिक स्थानों में समनिरंतरता=== | ||
सबसे सामान्य परिदृश्य जिसमें समरूपता को परिभाषित किया जा सकता है, वह सांस्थितिक | सबसे सामान्य परिदृश्य जिसमें समरूपता को परिभाषित किया जा सकता है, वह सांस्थितिक समष्टि के लिए है, जबकि समान समरूपता के लिए एक बिंदु के सामीप्य के [[फ़िल्टर (सेट सिद्धांत)]] की आवश्यकता होती है, जो किसी अन्य बिंदु के सामीप्य के फ़िल्टर के साथ तुलनीय हो। उत्तरार्द्ध प्रायः एक समान संरचना के माध्यम से किया जाता है, जिससे एक समान स्थान मिलता है। इन मामलों में उपयुक्त परिभाषाएँ इस प्रकार हैं: | ||
: दो [[टोपोलॉजिकल स्पेस|सांस्थितिक स्पेस]] एक्स और वाई के बीच निरंतर फलनों का एक सेट 'एक्स ∈ एक्स और वाई ∈ वाई' बिंदुओं पर सांस्थितिक रूप से समनिरंतर है यदि वाई के बारे में किसी भी खुले सेट ओ के लिए, एक्स के सामीप्य यू और वाई के वी हैं जैसे कि प्रत्येक f ∈ A के लिए, यदि f[U] और V का प्रतिच्छेदन गैर-रिक्त है, f[U] ⊆ O. तब A को 'x ∈ प्रत्येक y ∈ Y. अंत में, A 'समनिरंतर' है यदि यह सभी बिंदुओं x ∈ X के लिए x पर समनिरंतर है। | : दो [[टोपोलॉजिकल स्पेस|सांस्थितिक स्पेस]] एक्स और वाई के बीच निरंतर फलनों का एक सेट 'एक्स ∈ एक्स और वाई ∈ वाई' बिंदुओं पर सांस्थितिक रूप से समनिरंतर है यदि वाई के बारे में किसी भी खुले सेट ओ के लिए, एक्स के सामीप्य यू और वाई के वी हैं जैसे कि प्रत्येक f ∈ A के लिए, यदि f[U] और V का प्रतिच्छेदन गैर-रिक्त है, f[U] ⊆ O. तब A को 'x ∈ प्रत्येक y ∈ Y. अंत में, A 'समनिरंतर' है यदि यह सभी बिंदुओं x ∈ X के लिए x पर समनिरंतर है। | ||
Line 209: | Line 209: | ||
का प्रत्येक तत्व {{mvar|𝒱}} को प्रतिवेश कहा जाता है. | का प्रत्येक तत्व {{mvar|𝒱}} को प्रतिवेश कहा जाता है. | ||
एकरूपताएं उन बिंदुओं के विचार ([[मीट्रिक रिक्त स्थान]] से ली गई) को सामान्यीकृत करती हैं{{mvar|r}}-बंद करें (के लिए {{math|''r'' > 0}}), जिसका अर्थ है कि उनकी दूरी < है {{mvar|r}}. | एकरूपताएं उन बिंदुओं के विचार ([[मीट्रिक रिक्त स्थान|मीट्रिक समष्टि]] से ली गई) को सामान्यीकृत करती हैं{{mvar|r}}-बंद करें (के लिए {{math|''r'' > 0}}), जिसका अर्थ है कि उनकी दूरी < है {{mvar|r}}. | ||
इसे स्पष्ट करने के लिए मान लीजिये {{math|(''Y'', ''d'')}} एक मीट्रिक स्थान है (इसलिए इसका विकर्ण {{mvar|Y}} सेट है {{math|{{(}}(''y'', ''z'') ∈ ''Y'' × ''Y'' : ''d''(''y'', ''z'') {{=}} 0{{)}}}}) | इसे स्पष्ट करने के लिए मान लीजिये {{math|(''Y'', ''d'')}} एक मीट्रिक स्थान है (इसलिए इसका विकर्ण {{mvar|Y}} सेट है {{math|{{(}}(''y'', ''z'') ∈ ''Y'' × ''Y'' : ''d''(''y'', ''z'') {{=}} 0{{)}}}}) | ||
किसी के लिए {{math|''r'' > 0}}, होने देना | किसी के लिए {{math|''r'' > 0}}, होने देना | ||
Line 219: | Line 219: | ||
दरअसल, सेट {{math|''U''{{sub|''r''}}}} एकरूपता उत्पन्न करें जो मीट्रिक स्थान के साथ प्रामाणिक रूप से जुड़ी हुई है {{math|(''Y'', ''d'')}}. | दरअसल, सेट {{math|''U''{{sub|''r''}}}} एकरूपता उत्पन्न करें जो मीट्रिक स्थान के साथ प्रामाणिक रूप से जुड़ी हुई है {{math|(''Y'', ''d'')}}. | ||
इस सामान्यीकरण का लाभ यह है कि अब हम कुछ महत्वपूर्ण परिभाषाओं का विस्तार कर सकते हैं जो मीट्रिक | इस सामान्यीकरण का लाभ यह है कि अब हम कुछ महत्वपूर्ण परिभाषाओं का विस्तार कर सकते हैं जो मीट्रिक समष्टि (उदाहरण के लिए [[पूर्ण मीट्रिक स्थान]]) के लिए सांस्थितिक समष्टि की व्यापक श्रेणी के लिए समझ में आते हैं। | ||
विशेष रूप से, सांस्थितिक समूहों और सांस्थितिक वेक्टर स्पेस के लिए। | विशेष रूप से, सांस्थितिक समूहों और सांस्थितिक वेक्टर स्पेस के लिए। | ||
Revision as of 13:35, 14 July 2023
गणितीय विश्लेषण में, यदि सभी फलन सतत फलन हैं और यहां वर्णित सटीक अर्थ में, किसी दिए गए सामीप्य पर उनमें समान भिन्नता है, तो फलनों का एक समूह समनिरंतर होता है।विशेष रूप से, यह अवधारणा गणनीय सेट समूहों और इस प्रकार फलनों के अनुक्रमों पर अनप्रयुक्त होती है।
एस्कोली के प्रमेय के निर्माण में समनिरंतरता दिखाई देती है, जिसमें कहा गया है कि C(X) का एक उपसमुच्चय, एक सघन(कॉम्पैक्ट) हॉसडॉर्फ स्पेस X पर सतत फलनों का स्थान, सघन है यदि और केवल यदि यह बंद है, बिंदुवार घिरा हुआ है और समनिरंतर है। एक उपप्रमेय के रूप में, C(X) में एक अनुक्रम समान रूप से अभिसरण होता है यदि और केवल यदि यह समनिरंतर है और बिंदुवार रूप से एक फलन में अभिसरण करता है (जरूरी नहीं कि संतत एक-प्राथमिकता हो)। विशेष रूप से, मीट्रिक स्थान पर या स्थानीय रूप से सतत स्थान पर[1] सतत फलनों fn के एक समनिरंतर बिंदुवार अभिसरण अनुक्रम की सीमा या तो सतत है। यदि, इसके अतिरिक्त, fn होलोमार्फिक हैं, तो सीमा भी होलोमोर्फिक है।
एकसमान सीमाबद्धता सिद्धांत बताता है कि बानाच स्थानों के बीच सतत रैखिक ऑपरेटरों का एक बिंदुवार बंधा हुआ समूह समनिरंतर है।[2]
मीट्रिक स्थानों के बीच समनिरंतरता
मान लीजिए कि X और Y दो मीट्रिक स्थान हैं, और F, X से Y तक फलनों का एक समूह है। हम इन स्थानों के संबंधित मैट्रिक्स को d द्वारा निरूपित करेंगे।
समूह F एक x0∈ X बिंदु पर समसतत् है यदि प्रत्येक ε > 0 के लिए, एक δ > 0 निहित है जैसे कि d(ƒ(x)0), ƒ(x)) < ε सभी ƒ ∈ F के लिए और सभी x जैसे कि d(x)0, x) < δ है। यदि समूह X के प्रत्येक बिंदु पर समसंतत है, तो वह बिंदुवार समसंतत है।[3]
समूह F समान रूप से समनिरंतर है यदि प्रत्येक ε > 0 के लिए, एक δ > 0 निहित है जैसे कि d(ƒ(x)1), ƒ(x2)) < ε सभी ƒ ∈ F और सभी x1, x2के लिए,∈ X जैसे कि d(x1, x2) <δ है।[4]
तुलना के लिए, कथन F में सभी फलन सतत हैं' का अर्थ है कि प्रत्येक ε > 0, प्रत्येक ƒ ∈ F, और प्रत्येक x0 ∈ X के लिए, वहाँ एक δ > 0 निहित है जैसे कि d(ƒ(x0), ƒ(x)) < ε सभी x ∈ X के लिए जैसे कि d(x0, x) < δ है।
- निरंतरता के लिए, δ ε, ƒ, और x0 पर निर्भर हो सकता है.
- एकसमान निरंतरता के लिए, δ ε और ƒ पर निर्भर हो सकता है।
- बिंदुवार समनिरंतरता के लिए, δ ε और x पर निर्भर हो सकता है0.
- एकसमान समनिरंतरता के लिए, δ केवल ε पर निर्भर हो सकता है।
अधिक प्रायः, जब X एक सांस्थितिक स्पेस होता है, तो X से Y तक के फलनों के एक समुच्चय F को x पर समनिरंतर कहा जाता है यदि प्रत्येक ε > 0 के लिए, x में एक निकटवर्ती Ux होता है जैसे कि
सभी y ∈ Ux और ∈F के लिए है। यह परिभाषा प्रायः सांस्थितिक वेक्टर स्पेस के संदर्भ में दिखाई देती है।
जब X संहत होता है, तो एक समुच्चय समान रूप से समनिरंतर होता है यदि और केवल यदि यह प्रत्येक बिंदु पर समनिरंतर हो, अनिवार्य रूप से उसी कारण से क्योंकि एकसमान निरंतरता और निरंतरता संहत स्थानों पर मेल खाती है। अपने आप में प्रयुक्त, "समनिरंतरता" शब्द संदर्भ के आधार पर या तो बिंदुवार या एकसमान धारणा को संदर्भित कर सकता है। एक सघन स्थान पर, ये धारणाएँ मेल खाती हैं।
कुछ बुनियादी गुण परिभाषा से तुरंत अनुसरण करते हैं। सतत फलनों का प्रत्येक परिमित समुच्चय समसतत् है। एक समनिरंतर समुच्चय का समापन पुनः समनिरंतर है। फलनों प्रके समान रूप से समनिरंतर समूह का प्रत्येक सदस्य समान रूप से निरंतर है, और समान रूप से निरंतर फलनों का प्रत्येक परिमित समुच्चय समान रूप से समनिरंतर है।
उदाहरण
- एक सामान्य लिप्सचिट्ज़ स्थिरांक के साथ फलनों का एक समुच्चय (समान रूप से) समनिरंतर है। विशेष रूप से, यह स्थिति है यदि समुच्चय में समान स्थिरांक से घिरे व्युत्पन्न फलन होते हैं।
- समान सीमाबद्धता सिद्धांत निरंतर रैखिक ऑपरेटरों के एक समुच्चय के लिए समनिरंतर होने के लिए पर्याप्त परिस्थिति देता है।
- विश्लेषणात्मक फलन के पुनरावृत्तों का एक समूह फ़तौ समुच्चय पर समनिरंतर है।[5][6]
प्रतिउदाहरण
- फलनों का अनुक्रम fn(x) = आर्कटेन(nx), समनिरंतर नहीं है क्योंकि x0=0 पर परिभाषा का उल्लंघन होता है।
सांस्थितिक समूहों में मानचित्रों मानों की समरूपता
मान लीजिए कि T एक सांस्थितिक स्पेस है और Y एक योज्य सांस्थितिक समूह है (यानी एक समूह एक टोपोलॉजी से संपन्न है जो इसके संचालन को निरंतर बनाता है)। सांस्थितिक वेक्टर स्पेस सांस्थितिक समूहों के प्रमुख उदाहरण हैं और प्रत्येक सांस्थितिक समूह में एक संबद्ध विहित एकरूपता होती है।
- परिभाषा:[7] T से Y तक के मानचित्रों के एक समूह H को t ∈ T पर समसतत् कहा जाता है यदि Y में 0 के प्रत्येक सामीप्य V के लिए T में t के कुछ सामीप्य U निहित जैसे कि प्रत्येक h ∈ H के लिए h(U) ⊆ h(t) + V है। हम कहते हैं कि H समसतत् है यदि यह T के प्रत्येक बिंदु पर समसतत् है।
ध्यान दें कि यदि H एक बिंदु पर समसतत् है H में प्रत्येक मानचित्र बिंदु पर सतत है। स्पष्टतः, T से Y तक सतत मानचित्रों का प्रत्येक परिमित समुच्चय समसतत् है।
समसतत् रैखिक मानचित्र
क्योंकि प्रत्येक टोपोलॉजिकल वेक्टर स्पेस (टीवीएस) एक सांस्थितिक समूह है, इसलिए सांस्थितिक समूहों के लिए दिए गए मानचित्रों के एक समनिरंतर समूह की परिभाषा बिना किसी बदलाव के टीवीएस में स्थानांतरित हो जाती है।
समसतत् रैखिक मानचित्रों का लक्षण वर्णन
दो सांस्थितिक वेक्टर स्पेस के बीच फॉर्म के मानचित्रों के एक समूह को एक बिंदु पर समनिरंतर कहा जाता है यदि में मूल के प्रत्येक सामीप्य के लिए में मूल के कुछ सामीप्य निहित हैं जैसे कि सभी के लिए है।
यदि मानचित्रों का एक समूह है और एक समुच्चय है तो मान लीजिए है। संकेतन के साथ, यदि और तो समुच्चय हैं तो सभी के लिए यदि केवल है।
मान लीजिए कि और सांस्थितिक वेक्टर स्पेस (टीवीएस) हैं से तक रैखिक ऑपरेटरों का एक समूह है। उसके बाद निम्न बराबर हैं:
- समसतत् है।
- , के प्रत्येक बिंदु पर समसतत् है।
- , के किसी बिंदु पर समसतत् है।
- मूल बिंदु पर समसतत् है।
- अर्थात् में मूल के प्रत्येक सामीप्य के लिए के लिए, में मूल के एक सामीप्य का अस्तित्व है जैसे कि (या समकक्ष, प्रत्येक के लिए है)।[8]
- में मूल बिंदु के प्रत्येक सामीप्य के लिए , में मूल बिंदु का सामीप्य है।
- में का बंद होना समसतत् हैl
- बिंदु-वार अभिसरण की टोपोलॉजी से संपन्न को दर्शाता है।
- का संतुलित सेट समसतत् है।
जबकि यदि स्थानीय रूप से उत्तल है तो इस सूची को सम्मिलित करने के लिए बढ़ाया जा सकता है:
- का उत्तल सेट समनिरंतर है।[9]
- का संतुलित उत्तल सेट समनिरंतर है।[10][9]
जबकि यदि और स्थानीय रूप से उत्तल हैं तो इस सूची को सम्मिलित करने के लिए बढ़ाया जा सकता है:
- पर प्रत्येक सतत सेमिनोर्म के लिए, पर एक सतत सेमिनॉर्म निहित है, पर जैसे कि सभी सभी के लिए है। [9]
- यहाँ, का अर्थ है कि के लिए है।
जबकि यदि को बैरल किया गया है और स्थानीय रूप से उत्तल है तो इस सूची को सम्मिलित करने के लिए बढ़ाया जा सकता है:
- , में परिबद्ध है;[11]
- , में परिबद्ध है। [11]
- परिबद्ध अभिसरण की टोपोलॉजी से संपन्न को दर्शाता है (अर्थात, के परिबद्ध उपसमुच्चय पर एकसमान अभिसरण)।
जबकि यदि और यदि बानाच स्थान हैं तो इस सूची को इसमें सम्मिलित करने के लिए बढ़ाया जा सकता है:
- (अर्थात, ऑपरेटर मानदंड में समान रूप से बंधा हुआ है)।
समनिरंतर रैखिक समसतत् का लक्षण वर्णन
मान लीजिए कि निरंतर दोहरे स्थान के साथ फ़ील्ड पर एक टोपोलॉजिकल वेक्टर स्पेस (टीवीएस) है। पर रैखिक कार्यात्मकताओं के एक समूह को एक बिंदु पर समसतत् कहा जाता है यदि में मूल के प्रत्येक सामीप्य के लिए में मूल के कुछ सामीप्य निहित हैं। ऐसा कि सभी के लिए सभी के लिए है।
किसी भी उपसमुच्चय के लिए, निम्नलिखित समतुल्य हैं:[9]
- समसतत् है।
- मूल बिंदु पर समसतत् है।
- , के किसी बिंदु पर समसतत् है।
- , मूल के कुछ सामीप्य के ध्रुवीय सेट में समाहित है। [10]
- का (पूर्व)ध्रुवीय, में मूल बिंदु का सामीप्य है।
- में का कमजोर-* का बंद होना समसतत् है।
- का संतुलित सेट समसतत् है।
- का उत्तल सेट समसतत् है।
- का उत्तल सेट समसतत् है।[10]
जबकि यदि को मानकीकृत किया गया है तो इस सूची को इसमें सम्मिलित करने के लिए बढ़ाया जा सकता है:
- , का एक दृढ़ता से परिबद्ध उपसमुच्चय है। [10]
जबकि यदि एक बैरल वाला स्थान है तो इस सूची को इसमें सम्मिलित करने के लिए बढ़ाया जा सकता है:
- कमज़ोर* टोपोलॉजी में अपेक्षाकृत सघन है। [11]
- कमजोर* परिबद्ध है (अर्थात्, , में परिबद्ध है।) [11]
- परिबद्ध अभिसरण की टोपोलॉजी में परिबद्ध है (अर्थात्, में परिबद्ध है।)[11]
समसतत् रैखिक मानचित्रों के गुण
एकसमान सीमा सिद्धांत (जिसे बानाच-स्टाइनहॉस प्रमेय के रूप में भी जाना जाता है) में कहा गया है कि बानाच स्थानों के बीच रैखिक मानचित्रों का एक सेट समनिरंतर है यदि यह बिंदुवार घिरा हुआ है; अर्थात्, प्रत्येक के लिए है। परिणाम को ऐसे स्थिति में सामान्यीकृत किया जा सकता है जब स्थानीय रूप से उत्तल हो और एक बैरल वाला स्थान हो।[12]
समसतत् रैखिक कार्यात्मकताओं के गुण
अलाओग्लू के प्रमेय का तात्पर्य है कि एक समनिरंतर उपसमुच्चय का कमजोर-* बंद होना कमज़ोर है-* सघन; इस प्रकार प्रत्येक समनिरंतर उपसमुच्चय कमजोर-* अपेक्षाकृत सघन होता है।[13][9]
अगर यदि कोई स्थानीय रूप से उत्तल टीवीएस है, तो सभी बैरल वाले स्थानों का समूह और सभी उपसमूहों का समूह जो उत्तल, संतुलित, बंद और घिरे हुए हैं ध्रुवता द्वारा एक दूसरे से मेल खाते हैं (के संबंध में)। ).[14] यह इस प्रकार है कि एक स्थानीय रूप से उत्तल टी.वी.एस वर्जित है यदि और केवल यदि प्रत्येक परिबद्ध उपसमुच्चय समनिरंतर है.[14]
Theorem — Suppose that is a separable TVS. Then every closed equicontinuous subset of is a compact metrizable space (under the subspace topology). If in addition is metrizable then is separable.[14]
समान निरंतरता और एकसमान अभिसरण
मान लीजिए कि फिर अर्ज़ेला-एस्कोली प्रमेय बताता है कि C(X) का एक उपसमुच्चय सघन है यदि और केवल तभी जब वह बंद हो, समान रूप से घिरा हुआ हो और समनिरंतर हो। [15] यह हेइन-बोरेल प्रमेय के अनुरूप है, जो बताता है कि आर के उपसमुच्चयnसंहत हैं यदि और केवल तभी जब वे बंद और परिबद्ध हों।[16] परिणाम के रूप में, C(X) में प्रत्येक समान रूप से बंधे समनिरंतर अनुक्रम में एक अनुवर्ती होता है जो X पर एक निरंतर कार्य में समान रूप से परिवर्तित होता है।
अर्ज़ेला-एस्कोली प्रमेय के मद्देनजर, सी(एक्स) में एक अनुक्रम समान रूप से परिवर्तित होता है यदि और केवल यदि यह समनिरंतर है और बिंदुवार रूप से परिवर्तित होता है। कथन की परिकल्पना को थोड़ा कमजोर किया जा सकता है: सी (एक्स) में एक अनुक्रम समान रूप से परिवर्तित होता है यदि यह समवर्ती है और एक्स पर कुछ फलन के घने उपसमुच्चय पर बिंदुवार परिवर्तित होता है (निरंतर नहीं माना जाता है)।
Suppose fj is an equicontinuous sequence of continuous functions on a dense subset D of X. Let ε > 0 be given. By equicontinuity, for each z ∈ D, there exists a neighborhood Uz of z such that
for all j and x ∈ Uz. By denseness and compactness, we can find a finite subset D′ ⊂ D such that X is the union of Uz over z ∈ D′. Since fj converges pointwise on D′, there exists N > 0 such that
whenever z ∈ D′ and j, k > N. It follows that
for all j, k > N. In fact, if x ∈ X, then x ∈ Uz for some z ∈ D′ and so we get:
- .
Hence, fj is Cauchy in C(X) and thus converges by completeness.
इस कमजोर संस्करण का उपयोग प्रायः अलग-अलग सघन स्थानों के लिए अर्ज़ेला-एस्कोली प्रमेय को साबित करने के लिए किया जाता है। एक और परिणाम यह है कि एक मीट्रिक स्थान पर, या स्थानीय रूप से सघन स्थान पर निरंतर फलनों के एक समनिरंतर बिंदुवार अभिसरण अनुक्रम की सीमा निरंतर है। (उदाहरण के लिए नीचे देखें।) उपरोक्त में, X की सघनता की परिकल्पना को शिथिल नहीं किया जा सकता है। यह देखने के लिए, 'R' पर g(0)= 1 के साथ एक सघन रूप से समर्थित निरंतर फलन g पर विचार करें, और फ़ंक्शंस के समनिरंतर अनुक्रम पर विचार करें {ƒn}' द्वारा परिभाषित आर परn(x)= g(x − n). फिर,n बिंदुवार 0 पर अभिसरित होता है लेकिन समान रूप से 0 पर अभिसरित नहीं होता।
एकसमान अभिसरण का यह मानदंड अक्सर वास्तविक और जटिल विश्लेषण में उपयोगी होता है। मान लीजिए कि हमें निरंतर फलनों का एक क्रम दिया गया है जो 'आर' के कुछ खुले उपसमुच्चय जी पर बिंदुवार परिवर्तित होता है।n. जैसा कि ऊपर उल्लेख किया गया है, यह वास्तव में जी के एक सघन उपसमुच्चय पर समान रूप से परिवर्तित होता है यदि यह सघन सेट पर समान है। व्यवहार में, सम-निरंतरता दिखाना अक्सर इतना कठिन नहीं होता है। उदाहरण के लिए, यदि अनुक्रम में कुछ नियमितता के साथ अलग-अलग फलन या फलन सम्मिलित हैं (उदाहरण के लिए, फलन एक अंतर समीकरण के समाधान हैं), तो अनुक्रम को समतुल्य दिखाने के लिए औसत मूल्य प्रमेय या कुछ अन्य प्रकार के अनुमानों का उपयोग किया जा सकता है। इसके बाद यह निष्कर्ष निकलता है कि अनुक्रम की सीमा G के प्रत्येक सघन उपसमुच्चय पर निरंतर है; इस प्रकार, जी पर निरंतर। एक समान तर्क तब दिया जा सकता है जब फलन होलोमोर्फिक हों। उदाहरण के लिए, कोई समसंगति (संक्षिप्त उपसमुच्चय पर) दिखाने के लिए कॉची के अनुमान का उपयोग कर सकता है और यह निष्कर्ष निकाल सकता है कि सीमा होलोमोर्फिक है। ध्यान दें कि यहां समनिरंतरता आवश्यक है। उदाहरण के लिए,n(x)= arctan n x असंतुलित साइन फलन के गुणक में परिवर्तित हो जाता है।
सामान्यीकरण
सामयिक स्थानों में समनिरंतरता
सबसे सामान्य परिदृश्य जिसमें समरूपता को परिभाषित किया जा सकता है, वह सांस्थितिक समष्टि के लिए है, जबकि समान समरूपता के लिए एक बिंदु के सामीप्य के फ़िल्टर (सेट सिद्धांत) की आवश्यकता होती है, जो किसी अन्य बिंदु के सामीप्य के फ़िल्टर के साथ तुलनीय हो। उत्तरार्द्ध प्रायः एक समान संरचना के माध्यम से किया जाता है, जिससे एक समान स्थान मिलता है। इन मामलों में उपयुक्त परिभाषाएँ इस प्रकार हैं:
- दो सांस्थितिक स्पेस एक्स और वाई के बीच निरंतर फलनों का एक सेट 'एक्स ∈ एक्स और वाई ∈ वाई' बिंदुओं पर सांस्थितिक रूप से समनिरंतर है यदि वाई के बारे में किसी भी खुले सेट ओ के लिए, एक्स के सामीप्य यू और वाई के वी हैं जैसे कि प्रत्येक f ∈ A के लिए, यदि f[U] और V का प्रतिच्छेदन गैर-रिक्त है, f[U] ⊆ O. तब A को 'x ∈ प्रत्येक y ∈ Y. अंत में, A 'समनिरंतर' है यदि यह सभी बिंदुओं x ∈ X के लिए x पर समनिरंतर है।
- दो एकसमान स्थानों
- { (u,v) ∈ X × X: for all f ∈ A. (f(u),f(v)) ∈ W }
- एक्स पर एकरूपता का सदस्य है
- समान स्थानों का परिचय
अब हम एकरूपता में अंतर्निहित मूल विचार का संक्षेप में वर्णन करते हैं।
एकरूपता 𝒱 के उपसमुच्चय का एक गैर-रिक्त संग्रह है Y × Y जहां, कई अन्य संपत्तियों के बीच, प्रत्येक V ∈ 𝒱, V का विकर्ण सम्मिलित है Y (अर्थात {(y, y) ∈ Y}). का प्रत्येक तत्व 𝒱 को प्रतिवेश कहा जाता है.
एकरूपताएं उन बिंदुओं के विचार (मीट्रिक समष्टि से ली गई) को सामान्यीकृत करती हैंr-बंद करें (के लिए r > 0), जिसका अर्थ है कि उनकी दूरी < है r. इसे स्पष्ट करने के लिए मान लीजिये (Y, d) एक मीट्रिक स्थान है (इसलिए इसका विकर्ण Y सेट है {(y, z) ∈ Y × Y : d(y, z) = 0}) किसी के लिए r > 0, होने देना
- Ur = {(y, z) ∈ Y × Y : d(y, z) < r}
बिंदुओं के सभी युग्मों के समुच्चय को निरूपित करें r-बंद करना। ध्यान दें कि अगर हमें यह भूलना है d तब अस्तित्व में था, किसी के लिए भी r > 0, हम अभी भी यह निर्धारित करने में सक्षम होंगे कि दो बिंदु हैं या नहीं Y हैं r-केवल सेट का उपयोग करके बंद करें Ur. इस प्रकार, सेट Ur किसी भी मीट्रिक की आवश्यकता के बिना समान निरंतरता और समान अभिसरण जैसी चीजों को परिभाषित करने के लिए आवश्यक सभी जानकारी को समाहित करें। इन सेटों के सबसे बुनियादी गुणों को स्वयंसिद्ध करने से एक समान स्थान की परिभाषा प्राप्त होती है। दरअसल, सेट Ur एकरूपता उत्पन्न करें जो मीट्रिक स्थान के साथ प्रामाणिक रूप से जुड़ी हुई है (Y, d).
इस सामान्यीकरण का लाभ यह है कि अब हम कुछ महत्वपूर्ण परिभाषाओं का विस्तार कर सकते हैं जो मीट्रिक समष्टि (उदाहरण के लिए पूर्ण मीट्रिक स्थान) के लिए सांस्थितिक समष्टि की व्यापक श्रेणी के लिए समझ में आते हैं। विशेष रूप से, सांस्थितिक समूहों और सांस्थितिक वेक्टर स्पेस के लिए।
- एक कमजोर अवधारणा सम निरंतरता की है
- दो सांस्थितिक स्थानों f[U] ⊆ O जब भी f(x) ∈ V. यह 'x पर समान रूप से निरंतर' है यदि यह प्रत्येक y ∈ Y के लिए x और y पर समान रूप से निरंतर है, और 'समान रूप से निरंतर' है यदि यह x पर समान रूप से निरंतर है प्रत्येक x ∈ X.
स्टोकेस्टिक समनिरंतरता
स्टोकेस्टिक इक्विकंटिनिटी, इक्विकंटिनिटी का एक संस्करण है जिसका उपयोग यादृच्छिक चर के फलनों के अनुक्रम और यादृच्छिक चर के उनके अभिसरण के संदर्भ में किया जाता है।[17]
यह भी देखें
- Absolute continuity
- Classification of discontinuities
- Coarse function
- Continuous function
- Continuous function (set theory)
- Continuous stochastic process
- Dini continuity
- Direction-preserving function - असतत स्थानों में एक सतत फलन का एक एनालॉग।
- Microcontinuity
- Normal function
- Piecewise
- Symmetrically continuous function
- Uniform continuity
टिप्पणियाँ
- ↑ More generally, on any compactly generated space; e.g., a first-countable space.
- ↑ Rudin 1991, p. 44 §2.5.
- ↑ Reed & Simon (1980), p. 29; Rudin (1987), p. 245
- ↑ Reed & Simon (1980), p. 29
- ↑ Alan F. Beardon, S. Axler, F.W. Gehring, K.A. Ribet : Iteration of Rational Functions: Complex Analytic Dynamical Systems. Springer, 2000; ISBN 0-387-95151-2, ISBN 978-0-387-95151-5; page 49
- ↑ Joseph H. Silverman : The arithmetic of dynamical systems. Springer, 2007. ISBN 0-387-69903-1, ISBN 978-0-387-69903-5; page 22
- ↑ Narici & Beckenstein 2011, pp. 133–136.
- ↑ Rudin 1991, p. 44 Theorem 2.4.
- ↑ 9.0 9.1 9.2 9.3 9.4 Narici & Beckenstein 2011, pp. 225–273.
- ↑ 10.0 10.1 10.2 10.3 Trèves 2006, pp. 335–345.
- ↑ 11.0 11.1 11.2 11.3 11.4 Trèves 2006, pp. 346–350.
- ↑ Schaefer 1966, Theorem 4.2.
- ↑ Schaefer 1966, Corollary 4.3.
- ↑ 14.0 14.1 14.2 Schaefer & Wolff 1999, pp. 123–128.
- ↑ Rudin 1991, p. 394 Appendix A5.
- ↑ Rudin 1991, p. 18 Theorem 1.23.
- ↑ de Jong, Robert M. (1993). "Stochastic Equicontinuity for Mixing Processes". अर्थमिति में पैरामीटर स्पेस विधियों और डेटा निर्भरता के विस्तार का स्पर्शोन्मुख सिद्धांत. Amsterdam. pp. 53–72. ISBN 90-5170-227-2.
{{cite book}}
: CS1 maint: location missing publisher (link)
संदर्भ
- "Equicontinuity", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Reed, Michael; Simon, Barry (1980), Functional Analysis (revised and enlarged ed.), Boston, MA: Academic Press, ISBN 978-0-12-585050-6.
- Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
- Rudin, Walter (1991). Functional Analysis. International Series in Pure and Applied Mathematics. Vol. 8 (Second ed.). New York, NY: McGraw-Hill Science/Engineering/Math. ISBN 978-0-07-054236-5. OCLC 21163277.
- Rudin, Walter (1987), Real and Complex Analysis (3rd ed.), New York: McGraw-Hill.
- Schaefer, Helmut H. (1966), Topological vector spaces, New York: The Macmillan Company
- Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
- Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.