क्लिफोर्ड गेट्स: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Definition of quantum circuits}}
{{Short description|Definition of quantum circuits}}


[[ क्वांटम कम्प्यूटिंग |क्वांटम कम्प्यूटिंग]] और [[क्वांटम सूचना सिद्धांत]] में, क्लिफोर्ड गेट्स क्लिफोर्ड समूह के तत्व हैं, गणितीय परिवर्तनों का एक सेट जो <math>n</math>-क्विबिट [[पाउली समूह]] को सामान्य करता है, यानी, संयुग्मन के माध्यम से पाउली मैट्रिसेस के टेंसर उत्पादों को पाउली मैट्रिसेस के टेंसर उत्पादों में मैप करता है। यह धारणा [[डेनियल गॉट्समैन]] गेटा प्रस्तुत की गई थी और इसका नाम गणितज्ञ [[विलियम किंग्डन क्लिफोर्ड]] के नाम पर रखा गया है।<ref>{{Cite journal|last=Gottesman|first=Daniel|date=1998-01-01|title=दोष-सहिष्णु क्वांटम गणना का सिद्धांत|journal=[[Physical Review A]]|volume=57|issue=1|pages=127–137|doi=10.1103/physreva.57.127|arxiv=quant-ph/9702029|bibcode=1998PhRvA..57..127G|s2cid=8391036|issn=1050-2947|url=https://authors.library.caltech.edu/3850/1/GOTpra98.pdf}}</ref> क्वांटम सर्किट जिसमें केवल क्लिफ़ोर्ड गेट्स होते हैं, उन्हें गॉट्समैन-निल प्रमेय के कारण शास्त्रीय कंप्यूटर के साथ कुशलतापूर्वक अनुकरण किया जा सकता है।
[[ क्वांटम कम्प्यूटिंग |क्वांटम कम्प्यूटिंग]] और [[क्वांटम सूचना सिद्धांत]] में, क्लिफोर्ड गेट्स क्लिफोर्ड समूह के तत्व हैं, गणितीय परिवर्तनों का एक समूह जो <math>n</math>-क्विबिट [[पाउली समूह]] को सामान्य करता है, यानी, संयुग्मन के माध्यम से पाउली मैट्रिसेस के टेंसर उत्पादों को पाउली मैट्रिसेस के टेंसर उत्पादों में मैप करता है। यह धारणा [[डेनियल गॉट्समैन]] गेटा प्रस्तुत की गई थी और इसका नाम गणितज्ञ [[विलियम किंग्डन क्लिफोर्ड]] के नाम पर रखा गया है।<ref>{{Cite journal|last=Gottesman|first=Daniel|date=1998-01-01|title=दोष-सहिष्णु क्वांटम गणना का सिद्धांत|journal=[[Physical Review A]]|volume=57|issue=1|pages=127–137|doi=10.1103/physreva.57.127|arxiv=quant-ph/9702029|bibcode=1998PhRvA..57..127G|s2cid=8391036|issn=1050-2947|url=https://authors.library.caltech.edu/3850/1/GOTpra98.pdf}}</ref> क्वांटम सर्किट जिसमें केवल क्लिफ़ोर्ड गेट्स होते हैं, उन्हें गॉट्समैन-निल प्रमेय के कारण शास्त्रीय कंप्यूटर के साथ कुशलतापूर्वक अनुकरण किया जा सकता है।


== क्लिफोर्ड समूह ==
== क्लिफोर्ड समूह ==
Line 10: Line 10:


: <math>\sigma_0=I=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \sigma_1=X=\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \sigma_2=Y=\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \text{ and } \sigma_3=Z=\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}</math>
: <math>\sigma_0=I=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \sigma_1=X=\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \sigma_2=Y=\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \text{ and } \sigma_3=Z=\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}</math>
एकल [[क्वबिट]] के [[घनत्व ऑपरेटरों]] के साथ-साथ उन इकाइयों के लिए एक आधार प्रदान करें जिन्हें उन पर लागू किया जा सकता है। <math>n</math>-क्विबिट मामले के लिए, कोई एक समूह का निर्माण कर सकता है, जिसे पाउली समूह के रूप में जाना जाता है,
एकल [[क्वबिट]] के [[घनत्व ऑपरेटरों]] के साथ-साथ उन इकाइयों के लिए एक आधार प्रदान करें जिन्हें उन पर लागू किया जा सकता है। <math>n</math>-क्विबिट स्थिति के लिए, कोई एक समूह का निर्माण कर सकता है, जिसे पाउली समूह के रूप में जाना जाता है,


: <math>\mathbf{P}_n=\left\{ e^{i\theta\pi/2} \sigma_{j_1} \otimes \cdots \otimes \sigma_{j_n} \mid \theta = 0,1,2,3,j_k = 0,1,2,3 \right\}.</math>
: <math>\mathbf{P}_n=\left\{ e^{i\theta\pi/2} \sigma_{j_1} \otimes \cdots \otimes \sigma_{j_n} \mid \theta = 0,1,2,3,j_k = 0,1,2,3 \right\}.</math>
Line 17: Line 17:
कुछ लेखक क्लिफोर्ड समूह को [[भागफल समूह]] <math>\mathbf{C}_n/U(1)</math>, के रूप में परिभाषित करना चुनते हैं, जो <math>\mathbf{C}_n</math> में ऐसे तत्वों की गणना करता है जो समान तत्व के रूप में केवल समग्र चरण कारक से भिन्न होते हैं। <math>n=</math>1, 2, और 3 के लिए, इस समूह में क्रमशः 24, 11,520 और 92,897,280 तत्व शामिल हैं।<ref>{{Cite OEIS|A003956|Order of Clifford group}}</ref>
कुछ लेखक क्लिफोर्ड समूह को [[भागफल समूह]] <math>\mathbf{C}_n/U(1)</math>, के रूप में परिभाषित करना चुनते हैं, जो <math>\mathbf{C}_n</math> में ऐसे तत्वों की गणना करता है जो समान तत्व के रूप में केवल समग्र चरण कारक से भिन्न होते हैं। <math>n=</math>1, 2, और 3 के लिए, इस समूह में क्रमशः 24, 11,520 और 92,897,280 तत्व शामिल हैं।<ref>{{Cite OEIS|A003956|Order of Clifford group}}</ref>


यह पता चलता है<ref>{{Citation |title=Qiskit Community Tutorials |date=2022-05-10 |url=https://github.com/qiskit-community/qiskit-community-tutorials/blob/7a255971674813fb8e0aec6d2a1a05db0af4d02d/terra/qis_adv/Clifford_Group.ipynb |publisher=Qiskit Community |access-date=2022-05-11}}</ref> कि भागफल समूह <math>\mathbf{C}_n/\mathbf{P}_n</math> दो तत्वों के क्षेत्र F<sub>2</sub> पर <math>2n\times 2n</math> [[सिंपलेक्टिक मैट्रिक्स]] {{math|Sp(2''n'')}} के लिए आइसोमोर्फिक है। एकल क्वबिट के मामले में, जहां <math>\mathbf{A}\in\{I,V,W,H,HV,HW\}</math> और <math>\mathbf{B}\in\mathbf{P}_1=\{I,X,Y,Z\}</math>, <math>\mathbf{C}_1</math> में प्रत्येक तत्व को मैट्रिक्स उत्पाद <math>\mathbf{A}\mathbf{B}</math>, के रूप में व्यक्त किया जा सकता है,  यहां <math>H</math> हैडामर्ड गेट है, <math>S</math> चरण गेट है, <math>W=HS</math> और <math>V=W^{\dagger}</math>, <math> HS </math> अक्षों को <math> WXV = Y</math>, <math> WYV = Z</math> के रूप में स्वैप करें और <math> WZV = X</math> ,शेष गेटों के लिए, <math>HV=R_x(-\pi/2)</math> x-अक्ष के अनुदिश एक घूर्णन है, और <math>HW=S \sim R_Z(\pi/2)</math> z-अक्ष के अनुदिश एक घूर्णन है।
यह पता चलता है<ref>{{Citation |title=Qiskit Community Tutorials |date=2022-05-10 |url=https://github.com/qiskit-community/qiskit-community-tutorials/blob/7a255971674813fb8e0aec6d2a1a05db0af4d02d/terra/qis_adv/Clifford_Group.ipynb |publisher=Qiskit Community |access-date=2022-05-11}}</ref> कि भागफल समूह <math>\mathbf{C}_n/\mathbf{P}_n</math> दो तत्वों के क्षेत्र F<sub>2</sub> पर <math>2n\times 2n</math> [[सिंपलेक्टिक मैट्रिक्स]] {{math|Sp(2''n'')}} के लिए आइसोमोर्फिक है। एकल क्वबिट के स्थिति में, जहां <math>\mathbf{A}\in\{I,V,W,H,HV,HW\}</math> और <math>\mathbf{B}\in\mathbf{P}_1=\{I,X,Y,Z\}</math>, <math>\mathbf{C}_1</math> में प्रत्येक तत्व को मैट्रिक्स उत्पाद <math>\mathbf{A}\mathbf{B}</math>, के रूप में व्यक्त किया जा सकता है,  यहां <math>H</math> हैडामर्ड गेट है, <math>S</math> चरण गेट है, <math>W=HS</math> और <math>V=W^{\dagger}</math>, <math> HS </math> अक्षों को <math> WXV = Y</math>, <math> WYV = Z</math> के रूप में स्वैप करें और <math> WZV = X</math> ,शेष गेटों के लिए, <math>HV=R_x(-\pi/2)</math> x-अक्ष के अनुदिश एक घूर्णन है, और <math>HW=S \sim R_Z(\pi/2)</math> z-अक्ष के अनुदिश एक घूर्णन है।


=== जेनरेटर ===
=== जेनरेटर ===
Line 33: Line 33:
चरण गेट
चरण गेट


:<math> S = \begin{bmatrix} 1 & 0 \\ 0 & e^{i \frac{\pi}{2}} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} = \sqrt{Z}</math> जैसा कि क्लिफ़ोर्ड गेट है <math>SXS^\dagger = Y</math> और <math>SZS^\dagger = Z</math>.
:<math> S = \begin{bmatrix} 1 & 0 \\ 0 & e^{i \frac{\pi}{2}} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} = \sqrt{Z}</math>
:<math>SXS^\dagger = Y</math> और <math>SZS^\dagger = Z</math> के रूप में एक क्लिफोर्ड गेट है।


==== सीएनओटी गेट ====
==== सीएनओटी गेट ====
सीएनओटी गेट दो क्वैबिट पर लागू होता है। बीच में <math>X</math> और <math>Z</math> चार विकल्प हैं:
सीएनओटी गेट दो क्वैबिट पर लागू होता है। <math>X</math> और <math>Z</math> के बीच चार विकल्प हैं:
{| class="wikitable"
{| class="wikitable"
|+ CNOT Combinations
|+ सीएनओटी संयोजन
|-
|-
! <math>P</math> !! CNOT <math>P</math> CNOT<math>^\dagger</math>
! <math>P</math> !! सीएनओटी <math>P</math> सीएनओटी<math>^\dagger</math>
|-
|-
| <math>X \otimes I </math> || <math>X \otimes X </math>
| <math>X \otimes I </math> || <math>X \otimes X </math>
Line 50: Line 51:
| <math>I \otimes Z </math> || <math>Z \otimes Z </math>
| <math>I \otimes Z </math> || <math>Z \otimes Z </math>
|}
|}


== गुण और अनुप्रयोग ==
== गुण और अनुप्रयोग ==
क्लिफोर्ड गेट और पाउली गेट का क्रम आपस में बदला जा सकता है। उदाहरण के लिए, इसे 2 क्यूबिट पर निम्नलिखित ऑपरेटर पर विचार करके चित्रित किया जा सकता है
क्लिफोर्ड गेट और पाउली गेट का क्रम आपस में बदला जा सकता है। उदाहरण के लिए, इसे 2 क्यूबिट पर निम्नलिखित ऑपरेटर पर विचार करके चित्रित किया जा सकता है।
:<math>A=(X \otimes Z)CZ </math>.
:<math>A=(X \otimes Z)CZ </math>.
हम वह जानते हैं:
हम यह जानते हैं:<math>CZ(X \otimes I)CZ^\dagger =X \otimes Z </math>, यदि हम दाईं ओर से CZ से गुणा करते है।
<math>CZ(X \otimes I)CZ^\dagger =X \otimes Z </math>.
यदि हम दाईं ओर से CZ से गुणा करते हैं
:<math>CZ(X \otimes I) =(X \otimes Z)CZ </math>.
:<math>CZ(X \otimes I) =(X \otimes Z)CZ </math>.
अतः A, के बराबर है
अतः A, के बराबर है,
:<math>A=(X \otimes Z)CZ = CZ(X \otimes I) </math>.
:<math>A=(X \otimes Z)CZ = CZ(X \otimes I) </math>.


===सिम्युलैबिलिटी===
===अनुकरणीयता===
गॉट्समैन-निल प्रमेय में कहा गया है कि केवल निम्नलिखित तत्वों का उपयोग करके एक क्वांटम सर्किट को शास्त्रीय कंप्यूटर पर कुशलतापूर्वक अनुकरण किया जा सकता है:
गॉट्समैन-निल प्रमेय में कहा गया है कि केवल निम्नलिखित तत्वों का उपयोग करके एक क्वांटम सर्किट को शास्त्रीय कंप्यूटर पर कुशलतापूर्वक अनुकरण किया जा सकता है:


# कम्प्यूटेशनल आधार पर क्यूबिट की तैयारी बताती है,
# कम्प्यूटेशनल आधार पर क्वैबिट की तैयारी बताई जाती है,
# क्लिफ़ोर्ड गेट्स, और
# क्लिफ़ोर्ड गेट्स, और
# कम्प्यूटेशनल आधार पर माप.
# अभिकलनीय के आधार पर मापन


गॉट्समैन-निल प्रमेय से पता चलता है कि कुछ अत्यधिक क्वांटम उलझाव वाले राज्यों को भी कुशलतापूर्वक अनुकरण किया जा सकता है। कई महत्वपूर्ण प्रकार के [[क्वांटम एल्गोरिदम]] केवल क्लिफोर्ड गेट्स का उपयोग करते हैं, सबसे महत्वपूर्ण रूप से [[उलझाव आसवन]] और [[क्वांटम त्रुटि सुधार]] के लिए मानक एल्गोरिदम।
गॉट्समैन-निल प्रमेय से पता चलता है कि कुछ अत्यधिक उलझी हुई अवस्थाओं का भी कुशलतापूर्वक अनुकरण किया जा सकता है। कई महत्वपूर्ण प्रकार के [[क्वांटम एल्गोरिदम|क्वांटम कलन विधि]] केवल क्लिफोर्ड गेट्स का उपयोग करते हैं, सबसे महत्वपूर्ण रूप से [[उलझाव आसवन]] और [[क्वांटम त्रुटि सुधार]] के लिए मानक कलन विधि का उपयोग किया जाता है।


== क्वांटम गेट्स का एक सार्वभौमिक सेट बनाना ==
== क्वांटम गेट्स का एक सार्वभौमिक समूह बनाना ==
क्लिफोर्ड गेट क्वांटम_लॉजिक_गेट#यूनिवर्सल_क्वांटम_गेट्स नहीं बनाते हैं क्योंकि सभी गेट क्लिफोर्ड समूह के सदस्य नहीं हैं और कुछ गेटों को संचालन के एक सीमित सेट के साथ मनमाने ढंग से अनुमानित नहीं किया जा सकता है। एक उदाहरण क्वांटम_लॉजिक_गेट#फेज_शिफ्ट_गेट्स है (ऐतिहासिक रूप से जाना जाता है <math>\pi /8</math> दरवाज़ा):
क्लिफोर्ड गेट्स क्वांटम गेट्स का एक सार्वभौमिक समूह नहीं बनाते हैं क्योंकि सभी गेट क्लिफोर्ड समूह के सदस्य नहीं हैं और कुछ गेटों को संचालन के एक सीमित समूह के साथ मनमाने ढंग से अनुमानित नहीं किया जा सकता है। एक उदाहरण चरण शिफ्ट गेट है (ऐतिहासिक रूप से इसे <math>\pi /8</math> गेट के रूप में जाना जाता है):


:<math> T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i \frac{\pi}{4}} \end{bmatrix} = \sqrt{S} = \sqrt[4]{Z}</math>.
:<math> T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i \frac{\pi}{4}} \end{bmatrix} = \sqrt{S} = \sqrt[4]{Z}</math>.


यह दिखाने के लिए कि <math>T</math> गेट पाउली का नक्शा नहीं दिखाता-<math>X</math> दूसरे पाउली मैट्रिक्स का गेट:
यह दिखाने के लिए कि <math>T</math> गेट पाउली-<math>X</math> गेट को किसी अन्य पाउली मैट्रिक्स पर मैप नहीं करता है:


:<math>TX{T^\dagger } = \left[ {\begin{array}{*{20}{c}}
:<math>TX{T^\dagger } = \left[ {\begin{array}{*{20}{c}}
Line 91: Line 89:
   {{e^{i\frac{\pi }{4}}}}&0  
   {{e^{i\frac{\pi }{4}}}}&0  
\end{array}} \right]\not  \in {{\mathbf{P}}_1}</math>
\end{array}} \right]\not  \in {{\mathbf{P}}_1}</math>
हालाँकि, क्लिफ़ोर्ड समूह, जब इसके साथ संवर्धित किया गया <math>T</math> गेट, क्वांटम गणना के लिए एक सार्वभौमिक क्वांटम गेट सेट बनाता है।
हालाँकि, क्लिफ़ोर्ड समूह, जब इसके साथ संवर्धित किया गया <math>T</math> गेट, क्वांटम गणना के लिए एक सार्वभौमिक क्वांटम गेट समूह बनाता है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 17:09, 16 July 2023

क्वांटम कम्प्यूटिंग और क्वांटम सूचना सिद्धांत में, क्लिफोर्ड गेट्स क्लिफोर्ड समूह के तत्व हैं, गणितीय परिवर्तनों का एक समूह जो -क्विबिट पाउली समूह को सामान्य करता है, यानी, संयुग्मन के माध्यम से पाउली मैट्रिसेस के टेंसर उत्पादों को पाउली मैट्रिसेस के टेंसर उत्पादों में मैप करता है। यह धारणा डेनियल गॉट्समैन गेटा प्रस्तुत की गई थी और इसका नाम गणितज्ञ विलियम किंग्डन क्लिफोर्ड के नाम पर रखा गया है।[1] क्वांटम सर्किट जिसमें केवल क्लिफ़ोर्ड गेट्स होते हैं, उन्हें गॉट्समैन-निल प्रमेय के कारण शास्त्रीय कंप्यूटर के साथ कुशलतापूर्वक अनुकरण किया जा सकता है।

क्लिफोर्ड समूह

परिभाषा

पाउली मैट्रिसेस,

एकल क्वबिट के घनत्व ऑपरेटरों के साथ-साथ उन इकाइयों के लिए एक आधार प्रदान करें जिन्हें उन पर लागू किया जा सकता है। -क्विबिट स्थिति के लिए, कोई एक समूह का निर्माण कर सकता है, जिसे पाउली समूह के रूप में जाना जाता है,

क्लिफ़ोर्ड समूह को एकात्मक समूह के रूप में परिभाषित किया गया है जो पाउली समूह को केंद्रीकृत और सामान्यीकृत करता है, क्लिफोर्ड गेट्स को क्लिफोर्ड समूह के तत्वों के रूप में परिभाषित किया गया है।

कुछ लेखक क्लिफोर्ड समूह को भागफल समूह , के रूप में परिभाषित करना चुनते हैं, जो में ऐसे तत्वों की गणना करता है जो समान तत्व के रूप में केवल समग्र चरण कारक से भिन्न होते हैं। 1, 2, और 3 के लिए, इस समूह में क्रमशः 24, 11,520 और 92,897,280 तत्व शामिल हैं।[2]

यह पता चलता है[3] कि भागफल समूह दो तत्वों के क्षेत्र F2 पर सिंपलेक्टिक मैट्रिक्स Sp(2n) के लिए आइसोमोर्फिक है। एकल क्वबिट के स्थिति में, जहां और , में प्रत्येक तत्व को मैट्रिक्स उत्पाद , के रूप में व्यक्त किया जा सकता है, यहां हैडामर्ड गेट है, चरण गेट है, और , अक्षों को , के रूप में स्वैप करें और ,शेष गेटों के लिए, x-अक्ष के अनुदिश एक घूर्णन है, और z-अक्ष के अनुदिश एक घूर्णन है।

जेनरेटर

क्लिफ़ोर्ड समूह तीन गेटों, हैडमार्ड, S और सीएनओटी गेटों गेटा उत्पन्न होता है।[4][5][6] चूंकि सभी पाउली मैट्रिस का निर्माण चरण S और हैडामर्ड गेट से किया जा सकता है, प्रत्येक पाउली गेट भी क्लिफोर्ड समूह का एक तत्व है।

गेट, और गेट के गुणनफल के बराबर है। यह दिखाने के लिए कि एक एकात्मक क्लिफोर्ड समूह का सदस्य है, यह दिखाना पर्याप्त है कि सभी के लिए जिसमें केवल और के टेंसर उत्पाद शामिल हैं, हमारे पास गणित में है।

हैडमार्ड गेट

हैडामर्ड गेट

और के रूप में क्लिफोर्ड समूह का सदस्य है।

S गेट

चरण गेट

और के रूप में एक क्लिफोर्ड गेट है।

सीएनओटी गेट

सीएनओटी गेट दो क्वैबिट पर लागू होता है। और के बीच चार विकल्प हैं:

सीएनओटी संयोजन
सीएनओटी सीएनओटी

गुण और अनुप्रयोग

क्लिफोर्ड गेट और पाउली गेट का क्रम आपस में बदला जा सकता है। उदाहरण के लिए, इसे 2 क्यूबिट पर निम्नलिखित ऑपरेटर पर विचार करके चित्रित किया जा सकता है।

.

हम यह जानते हैं:, यदि हम दाईं ओर से CZ से गुणा करते है।

.

अतः A, के बराबर है,

.

अनुकरणीयता

गॉट्समैन-निल प्रमेय में कहा गया है कि केवल निम्नलिखित तत्वों का उपयोग करके एक क्वांटम सर्किट को शास्त्रीय कंप्यूटर पर कुशलतापूर्वक अनुकरण किया जा सकता है:

  1. कम्प्यूटेशनल आधार पर क्वैबिट की तैयारी बताई जाती है,
  2. क्लिफ़ोर्ड गेट्स, और
  3. अभिकलनीय के आधार पर मापन

गॉट्समैन-निल प्रमेय से पता चलता है कि कुछ अत्यधिक उलझी हुई अवस्थाओं का भी कुशलतापूर्वक अनुकरण किया जा सकता है। कई महत्वपूर्ण प्रकार के क्वांटम कलन विधि केवल क्लिफोर्ड गेट्स का उपयोग करते हैं, सबसे महत्वपूर्ण रूप से उलझाव आसवन और क्वांटम त्रुटि सुधार के लिए मानक कलन विधि का उपयोग किया जाता है।

क्वांटम गेट्स का एक सार्वभौमिक समूह बनाना

क्लिफोर्ड गेट्स क्वांटम गेट्स का एक सार्वभौमिक समूह नहीं बनाते हैं क्योंकि सभी गेट क्लिफोर्ड समूह के सदस्य नहीं हैं और कुछ गेटों को संचालन के एक सीमित समूह के साथ मनमाने ढंग से अनुमानित नहीं किया जा सकता है। एक उदाहरण चरण शिफ्ट गेट है (ऐतिहासिक रूप से इसे गेट के रूप में जाना जाता है):

.

यह दिखाने के लिए कि गेट पाउली- गेट को किसी अन्य पाउली मैट्रिक्स पर मैप नहीं करता है:

हालाँकि, क्लिफ़ोर्ड समूह, जब इसके साथ संवर्धित किया गया गेट, क्वांटम गणना के लिए एक सार्वभौमिक क्वांटम गेट समूह बनाता है।

यह भी देखें

संदर्भ

  1. Gottesman, Daniel (1998-01-01). "दोष-सहिष्णु क्वांटम गणना का सिद्धांत" (PDF). Physical Review A. 57 (1): 127–137. arXiv:quant-ph/9702029. Bibcode:1998PhRvA..57..127G. doi:10.1103/physreva.57.127. ISSN 1050-2947. S2CID 8391036.
  2. Sloane, N. J. A. (ed.). "Sequence A003956 (Order of Clifford group)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  3. Qiskit Community Tutorials, Qiskit Community, 2022-05-10, retrieved 2022-05-11
  4. Nielsen, Michael A.; Chuang, Isaac L. (2010-12-09). Quantum Computation and Quantum Information: 10th Anniversary Edition (in English). Cambridge University Press. ISBN 978-1-107-00217-3.
  5. Gottesman, Daniel (1998-01-01). "दोष-सहिष्णु क्वांटम गणना का सिद्धांत". Physical Review A (in English). 57 (1): 127–137. Bibcode:1998PhRvA..57..127G. doi:10.1103/PhysRevA.57.127. ISSN 1050-2947. S2CID 8391036.
  6. Gottesman, Daniel (1997-05-28). "स्टेबलाइजर कोड और क्वांटम त्रुटि सुधार". arXiv:quant-ph/9705052. Bibcode:1997PhDT.......232G. {{cite journal}}: Cite journal requires |journal= (help)