क्वांटम रजिस्टर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 11: Line 11:




<ref>{{cite book|last1=Major|first1=Günther W., V.N. Gheorghe, F.G.|title=Charged particle traps II : applications|date=2009|publisher=Springer|location=Berlin|isbn=978-3540922605|page=220}}</ref>हिल्बर्ट रिक्त स्थान के आयामों की संख्या इस बात पर निर्भर करती है कि अभिलेख किस प्रकार की क्वांटम प्रणालियों से बना है जबकि क्यूबिट 2-आयामी [[जटिल संख्या]] स्थान हैं और क्यूबिट 3-आयामी भी जटिल स्थान हैं तथा डी-आयामी क्वांटम प्रणाली की एन संख्या से बने अभिलेख के लिए हमारे पास हिल्बर्ट स्थान है - <math>\mathcal{H}=(\mathbb{C}^d)^{\otimes N} = \underbrace{\mathbb{C}^d \otimes \mathbb{C}^d \otimes \dots \otimes \mathbb{C}^d }_{N\text{ times}} \cong \mathbb{C}^{d^N}.</math>
 
हिल्बर्ट रिक्त स्थान के आयामों की संख्या इस बात पर निर्भर करती है कि अभिलेख किस प्रकार की क्वांटम प्रणालियों से बना है जबकि क्यूबिट [[जटिल संख्या|य]]और क्यूबिट 3-आयामी जटिल स्थान हैं तथा डी-आयामी क्वांटम प्रणाली की एन संख्या से बने अभिलेख के लिए हमारे पास हिल्बर्ट स्थान है - <math>\mathcal{H}=(\mathbb{C}^d)^{\otimes N} = \underbrace{\mathbb{C}^d \otimes \mathbb{C}^d \otimes \dots \otimes \mathbb{C}^d }_{N\text{ times}} \cong \mathbb{C}^{d^N}.</math>


अभिलेख [[कितना राज्य]] को [[ अच्छा संकेतन |अच्छा संकेतन]] में लिखा जा सकता है और यह<math>|\psi\rangle = \sum_{k=0}^{d^N-1} a_k|k\rangle = a_0|0\rangle + a_1|1\rangle + \dots + a_{d^N-1}|d^N-1\rangle.</math> मूल्य <math>a_k</math> [[संभाव्यता आयाम]] हैं जिससे बोर्न नियम और संभाव्यता स्वयंसिद्ध तथा दूसरा स्वयंसिद्ध का कारण है<math>\sum_{k=0}^{d^N-1} |a_k|^2 = 1,</math> इसलिए अभिलेख का संभावित राज्य स्थान [[इकाई क्षेत्र]] की सतह है उदाहरण केलिए <math>\mathbb{C}^{d^N}.</math>
अभिलेख [[कितना राज्य]] को [[ अच्छा संकेतन |अच्छा संकेतन]] में लिखा जा सकता है और यह<math>|\psi\rangle = \sum_{k=0}^{d^N-1} a_k|k\rangle = a_0|0\rangle + a_1|1\rangle + \dots + a_{d^N-1}|d^N-1\rangle.</math> मूल्य <math>a_k</math> [[संभाव्यता आयाम]] हैं जिससे बोर्न नियम और संभाव्यता स्वयंसिद्ध तथा दूसरा स्वयंसिद्ध का कारण है<math>\sum_{k=0}^{d^N-1} |a_k|^2 = 1,</math> इसलिए अभिलेख का संभावित राज्य स्थान [[इकाई क्षेत्र]] की सतह है उदाहरण केलिए <math>\mathbb{C}^{d^N}.</math>

Revision as of 17:24, 16 July 2023

क्वांटम कम्प्यूटिंग में क्वांटम रजिस्टर एक प्रणाली है जिसमें बहुत क्वैबिट सम्मिलित होता है[1] और यह शास्त्रीय प्रक्रमक पंजीकरण का क्वांटम अनुरूप है तथा क्वांटम कंप्यूटर क्वांटम पंजीकरण के भीतर क्वैब में परिपथता करके गणना करते हैं।[2]


परिभाषा

प्रायः यह माना जाता है कि अभिलेख में क्वैबिट होते हैं और यह भी माना जाता है कि अभिलेख घनत्व आव्यूह नहीं हैं बल्कि वे शुद्ध अवस्था हैं जबकि अभिलेख की परिभाषा को घनत्व आव्यूह तक बढ़ाया जा सकता है।

एक आकार क्वांटम अभिलेख एक क्वांटम प्रणाली है जिसमें क्वैब सम्मिलित है।

हिल्बर्ट स्थान जिसमें डेटा को क्वांटम अभिलेख में संग्रहीत किया जाता है जहां टेंसर उत्पाद है।


हिल्बर्ट रिक्त स्थान के आयामों की संख्या इस बात पर निर्भर करती है कि अभिलेख किस प्रकार की क्वांटम प्रणालियों से बना है जबकि क्यूबिट ं और क्यूबिट 3-आयामी जटिल स्थान हैं तथा डी-आयामी क्वांटम प्रणाली की एन संख्या से बने अभिलेख के लिए हमारे पास हिल्बर्ट स्थान है -

अभिलेख कितना राज्य को अच्छा संकेतन में लिखा जा सकता है और यह मूल्य संभाव्यता आयाम हैं जिससे बोर्न नियम और संभाव्यता स्वयंसिद्ध तथा दूसरा स्वयंसिद्ध का कारण है इसलिए अभिलेख का संभावित राज्य स्थान इकाई क्षेत्र की सतह है उदाहरण केलिए

  • 5-क्विबिट रजिस्टर का क्वांटम स्टेट वेक्टर एक इकाई वेक्टर है
  • चार क्वट्रिट्स का एक रजिस्टर इसी तरह एक यूनिट वेक्टर है


क्वांटम बनाम शास्त्रीय रजिस्टर

सबसे पहले, क्वांटम और शास्त्रीय रजिस्टर के बीच एक वैचारिक अंतर है। एक आकार शास्त्रीय रजिस्टर की एक सरणी को संदर्भित करता है फ्लिप-फ्लॉप_(इलेक्ट्रॉनिक्स)। एक साइज क्वांटम रजिस्टर महज एक संग्रह है qubits.

इसके अलावा, जबकि ए आकार शास्त्रीय रजिस्टर एकल मान को संग्रहीत करने में सक्षम है संभावनाओं द्वारा फैलाया गया शास्त्रीय शुद्ध बिट्स, एक क्वांटम रजिस्टर सभी को संग्रहीत करने में सक्षम है एक ही समय में क्वांटम Qubit#Qubit_states द्वारा फैलाई गई संभावनाएँ।

उदाहरण के लिए, 2-बिट-वाइड रजिस्टर पर विचार करें। एक शास्त्रीय रजिस्टर 2 बिट्स द्वारा दर्शाए गए संभावित मानों में से केवल एक को संग्रहीत करने में सक्षम है - इसलिए।

यदि हम क्वांटम_सुपरपोज़िशन में 2 शुद्ध क्वबिट पर विचार करते हैं और , क्वांटम रजिस्टर परिभाषा का उपयोग करते हुए इससे यह निष्कर्ष निकलता है कि यह एक साथ दो क्यूबिट द्वारा फैले सभी संभावित मूल्यों (सभी परिणामों के लिए गैर-शून्य संभाव्यता आयाम होने के कारण) को संग्रहीत करने में सक्षम है।

संदर्भ

  1. Ekert, Artur; Hayden, Patrick; Inamori, Hitoshi (2008). "Basic Concepts in Quantum Computation". सुसंगत परमाणु पदार्थ तरंगें. Les Houches - Ecole d'Ete de Physique Theorique. Vol. 72. pp. 661–701. arXiv:quant-ph/0011013. doi:10.1007/3-540-45338-5_10. ISBN 978-3-540-41047-8. S2CID 53402188.
  2. Ömer, Bernhard (2000-01-20). QCL में क्वांटम प्रोग्रामिंग (PDF) (Thesis). p. 52. Retrieved 2021-05-24.


अग्रिम पठन