क्वांटम रजिस्टर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[ क्वांटम कम्प्यूटिंग ]]में क्वांटम रजिस्टर एक प्रणाली है जिसमें बहुत क्वैबिट सम्मिलित होता है<ref>{{cite book |last1=Ekert |first1=Artur |last2=Hayden |first2=Patrick |last3=Inamori |first3=Hitoshi |date=2008 |title=सुसंगत परमाणु पदार्थ तरंगें|chapter=Basic Concepts in Quantum Computation |series=Les Houches - Ecole d'Ete de Physique Theorique |volume=72 |pages=661–701 |doi=10.1007/3-540-45338-5_10 |arxiv=quant-ph/0011013|isbn=978-3-540-41047-8 |s2cid=53402188 }}</ref> और यह शास्त्रीय [[प्रोसेसर रजिस्टर|प्रक्रमक पंजीकरण]] का क्वांटम अनुरूप है तथा क्वांटम कंप्यूटर क्वांटम पंजीकरण के भीतर क्वैब में परिपथता करके गणना करते हैं।<ref>{{cite thesis |last=Ömer |first=Bernhard |date=2000-01-20 |title=QCL में क्वांटम प्रोग्रामिंग|url=http://tph.tuwien.ac.at/~oemer/doc/quprog.pdf |access-date=2021-05-24 |pages=52}}</ref>
[[ क्वांटम कम्प्यूटिंग ]]में क्वांटम अभिलेख एक प्रणाली है जिसमें बहुत क्वैबिट सम्मिलित होता है<ref>{{cite book |last1=Ekert |first1=Artur |last2=Hayden |first2=Patrick |last3=Inamori |first3=Hitoshi |date=2008 |title=सुसंगत परमाणु पदार्थ तरंगें|chapter=Basic Concepts in Quantum Computation |series=Les Houches - Ecole d'Ete de Physique Theorique |volume=72 |pages=661–701 |doi=10.1007/3-540-45338-5_10 |arxiv=quant-ph/0011013|isbn=978-3-540-41047-8 |s2cid=53402188 }}</ref> और यह शास्त्रीय [[प्रोसेसर रजिस्टर|प्रक्रमक अभिलेख]] का क्वांटम अनुरूप है तथा क्वांटम कंप्यूटर क्वांटम अभिलेख के भीतर क्वैब में परिपथता करके गणना करते हैं।<ref>{{cite thesis |last=Ömer |first=Bernhard |date=2000-01-20 |title=QCL में क्वांटम प्रोग्रामिंग|url=http://tph.tuwien.ac.at/~oemer/doc/quprog.pdf |access-date=2021-05-24 |pages=52}}</ref>




Line 22: Line 22:
उदाहरण केलिए <math>\mathbb{C}^{d^N}.</math>
उदाहरण केलिए <math>\mathbb{C}^{d^N}.</math>
* 5-क्विबिट अभिलेख का क्वांटम राज्य वेक्टर एक [[ इकाई वेक्टर | इकाई वेक्टर]]  है <math>\mathbb{C}^{2^5}=\mathbb{C}^{32}.</math>
* 5-क्विबिट अभिलेख का क्वांटम राज्य वेक्टर एक [[ इकाई वेक्टर | इकाई वेक्टर]]  है <math>\mathbb{C}^{2^5}=\mathbb{C}^{32}.</math>
* चार क्वट्रिट्स का एक रजिस्टर इसी तरह एक इकाई वेक्टर है <math>\mathbb{C}^{3^4}=\mathbb{C}^{81}.</math>
* चार क्वट्रिट्स का एक अभिलेख इसी तरह एक इकाई वेक्टर है <math>\mathbb{C}^{3^4}=\mathbb{C}^{81}.</math>




== क्वांटम बनाम शास्त्रीय रजिस्टर ==
== क्वांटम बनाम शास्त्रीय अभिलेख ==
सबसे पहले क्वांटम और शास्त्रीय अभिलेख के बीच एक वैचारिक अंतर है और <math>n</math> फ्लिप फ्लॉप एक <math>n</math> शास्त्रीय अभिलेख की एक सारणी को संदर्भित करता है तथा <math>n</math> आकार क्वांटम अभिलेख केवल एक संग्रह है ।
सबसे पहले क्वांटम और शास्त्रीय अभिलेख के बीच एक वैचारिक अंतर है और <math>n</math> फ्लिप फ्लॉप एक <math>n</math> शास्त्रीय अभिलेख की एक सारणी को संदर्भित करता है तथा <math>n</math> आकार क्वांटम अभिलेख केवल एक संग्रह है ।


इसके अलावा <math>n</math> आकार शास्त्रीय अभिलेख एकल मान को संग्रहीत करने में सक्षम है और <math>2^n</math> संभावनाओं द्वारा फैलाया गया एक <math>n</math> शास्त्रीय शुद्ध बिट्स एक क्वांटम अभिलेख को संग्रहीत करने में सक्षम है तथा <math>2^n</math> क्वांटम शुद्ध क्वैबिट द्वारा फैलाई गई संभावनाएँ हैं।
इसके अलावा <math>n</math> आकार शास्त्रीय अभिलेख एकल मान को संग्रहीत करने में सक्षम है और <math>2^n</math> संभावनाओं द्वारा फैलाया गया एक <math>n</math> शास्त्रीय शुद्ध बिट्स एक क्वांटम अभिलेख को संग्रहीत करने में सक्षम है तथा <math>2^n</math> क्वांटम शुद्ध क्वैबिट द्वारा फैलाई गई संभावनाएँ हैं।


उदाहरण के लिए 2-बिट-वाइड अभिलेख पर विचार करें एक शास्त्रीय रजिस्टर 2 बिट्स द्वारा दर्शाए गए संभावित मानों में से केवल एक को संग्रहीत करने में सक्षम है - <math> 00, 01, 10, 11 \quad(0, 1, 2, 3)</math> इसलिए।
उदाहरण के लिए 2-अंश चौड़ा अभिलेख पर विचार करें एक शास्त्रीय रजिस्टर 2 बिट्स द्वारा दर्शाए गए संभावित मानों में से केवल एक को संग्रहीत करने में इसीलिए सक्षम है - <math> 00, 01, 10, 11 \quad(0, 1, 2, 3)</math>  


यदि हम क्वांटम_सुपरपोज़िशन में 2 शुद्ध क्वबिट पर विचार करते हैं <math>|a_0\rangle=\frac{1}{\sqrt2}(|0\rangle + |1\rangle)</math> और <math>|a_1\rangle=\frac{1}{\sqrt2}(|0\rangle - |1\rangle)</math>, क्वांटम रजिस्टर परिभाषा का उपयोग करते हुए <math>|a\rangle=|a_{0}\rangle\otimes|a_{1}\rangle = \frac{1}{2}(|00\rangle - |01\rangle + |10\rangle - |11\rangle)</math> इससे यह निष्कर्ष निकलता है कि यह एक साथ दो क्यूबिट द्वारा फैले सभी संभावित मूल्यों (सभी परिणामों के लिए गैर-शून्य संभाव्यता आयाम होने के कारण) को संग्रहीत करने में सक्षम है।
क्वांटम अभिलेख परिभाषा का उपयोग करते हुए यदि हम क्वांटम अध्यारोपण में 2 शुद्ध क्वबिट पर विचार करते हैं तो <math>|a_0\rangle=\frac{1}{\sqrt2}(|0\rangle + |1\rangle)</math> <math>|a_1\rangle=\frac{1}{\sqrt2}(|0\rangle - |1\rangle)</math> और <math>|a\rangle=|a_{0}\rangle\otimes|a_{1}\rangle = \frac{1}{2}(|00\rangle - |01\rangle + |10\rangle - |11\rangle)</math> इससे यह निष्कर्ष निकलता है कि यह एक साथ दो क्यूबिट द्वारा फैले सभी संभावित मूल्यों को संग्रहीत करने में सक्षम है।


==संदर्भ==
==संदर्भ==

Revision as of 18:19, 16 July 2023

क्वांटम कम्प्यूटिंग में क्वांटम अभिलेख एक प्रणाली है जिसमें बहुत क्वैबिट सम्मिलित होता है[1] और यह शास्त्रीय प्रक्रमक अभिलेख का क्वांटम अनुरूप है तथा क्वांटम कंप्यूटर क्वांटम अभिलेख के भीतर क्वैब में परिपथता करके गणना करते हैं।[2]


परिभाषा

प्रायः यह माना जाता है कि अभिलेख में क्वैबिट होते हैं और यह भी माना जाता है कि अभिलेख घनत्व आव्यूह नहीं हैं बल्कि वे शुद्ध अवस्था हैं जबकि अभिलेख की परिभाषा को घनत्व आव्यूह तक बढ़ाया जा सकता है।

एक आकार क्वांटम अभिलेख एक क्वांटम प्रणाली है जिसमें क्वैब सम्मिलित है।

हिल्बर्ट स्थान जिसमें डेटा को क्वांटम अभिलेख में संग्रहीत किया जाता है जहां टेंसर उत्पाद है।


हिल्बर्ट रिक्त स्थान के आयामों की संख्या इस बात पर निर्भर करती है कि अभिलेख किस प्रकार की क्वांटम प्रणालियों से बना है जबकि क्यूबिट ं और क्यूबिट 3-आयामी जटिल स्थान हैं तथा डी-आयामी क्वांटम प्रणाली की एन संख्या से बने अभिलेख के लिए हमारे पास हिल्बर्ट स्थान है -

अभिलेख क्वांटम स्थिति को ब्रा-केट संकेतन में लिखा जा सकता है

मूल्य संभाव्यता आयाम हैं जो कि बोर्न नियम संभाव्यता स्वयंसिद्ध और दूसरा स्वयंसिद्ध का कारण है तथा इसलिए अभिलेख का संभावित राज्य स्थान इकाई क्षेत्र की सतह है।

उदाहरण केलिए

  • 5-क्विबिट अभिलेख का क्वांटम राज्य वेक्टर एक इकाई वेक्टर है
  • चार क्वट्रिट्स का एक अभिलेख इसी तरह एक इकाई वेक्टर है


क्वांटम बनाम शास्त्रीय अभिलेख

सबसे पहले क्वांटम और शास्त्रीय अभिलेख के बीच एक वैचारिक अंतर है और फ्लिप फ्लॉप एक शास्त्रीय अभिलेख की एक सारणी को संदर्भित करता है तथा आकार क्वांटम अभिलेख केवल एक संग्रह है ।

इसके अलावा आकार शास्त्रीय अभिलेख एकल मान को संग्रहीत करने में सक्षम है और संभावनाओं द्वारा फैलाया गया एक शास्त्रीय शुद्ध बिट्स एक क्वांटम अभिलेख को संग्रहीत करने में सक्षम है तथा क्वांटम शुद्ध क्वैबिट द्वारा फैलाई गई संभावनाएँ हैं।

उदाहरण के लिए 2-अंश चौड़ा अभिलेख पर विचार करें एक शास्त्रीय रजिस्टर 2 बिट्स द्वारा दर्शाए गए संभावित मानों में से केवल एक को संग्रहीत करने में इसीलिए सक्षम है -

क्वांटम अभिलेख परिभाषा का उपयोग करते हुए यदि हम क्वांटम अध्यारोपण में 2 शुद्ध क्वबिट पर विचार करते हैं तो और इससे यह निष्कर्ष निकलता है कि यह एक साथ दो क्यूबिट द्वारा फैले सभी संभावित मूल्यों को संग्रहीत करने में सक्षम है।

संदर्भ

  1. Ekert, Artur; Hayden, Patrick; Inamori, Hitoshi (2008). "Basic Concepts in Quantum Computation". सुसंगत परमाणु पदार्थ तरंगें. Les Houches - Ecole d'Ete de Physique Theorique. Vol. 72. pp. 661–701. arXiv:quant-ph/0011013. doi:10.1007/3-540-45338-5_10. ISBN 978-3-540-41047-8. S2CID 53402188.
  2. Ömer, Bernhard (2000-01-20). QCL में क्वांटम प्रोग्रामिंग (PDF) (Thesis). p. 52. Retrieved 2021-05-24.


अग्रिम पठन