क्वांटम रजिस्टर: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[ क्वांटम कम्प्यूटिंग | क्वांटम संगणक]] में क्वांटम रजिस्टर एक प्रणाली है जिसमें | [[ क्वांटम कम्प्यूटिंग | क्वांटम संगणक]] में क्वांटम रजिस्टर एक प्रणाली है जिसमें क्वैबिट सम्मिलित है<ref>{{cite book |last1=Ekert |first1=Artur |last2=Hayden |first2=Patrick |last3=Inamori |first3=Hitoshi |date=2008 |title=सुसंगत परमाणु पदार्थ तरंगें|chapter=Basic Concepts in Quantum Computation |series=Les Houches - Ecole d'Ete de Physique Theorique |volume=72 |pages=661–701 |doi=10.1007/3-540-45338-5_10 |arxiv=quant-ph/0011013|isbn=978-3-540-41047-8 |s2cid=53402188 }}</ref> और यह [[प्रोसेसर रजिस्टर|प्रक्रमक रजिस्टर]] का क्वांटम अनुरूप है तथा क्वांटम कंप्यूटर क्वांटम रजिस्टर के भीतर परिपथता करके गणना करते हैं।<ref>{{cite thesis |last=Ömer |first=Bernhard |date=2000-01-20 |title=QCL में क्वांटम प्रोग्रामिंग|url=http://tph.tuwien.ac.at/~oemer/doc/quprog.pdf |access-date=2021-05-24 |pages=52}}</ref> | ||
== परिभाषा == | == परिभाषा == | ||
{{Further|Mathematical formulation of quantum mechanics#Description of the state of a system}} | {{Further|Mathematical formulation of quantum mechanics#Description of the state of a system}} | ||
सामान्यतः यह माना जाता है कि रजिस्टर में क्वैबिट होते हैं और यह भी माना जाता है कि रजिस्टर [[घनत्व मैट्रिक्स|घनत्व आव्यूह]] नहीं हैं बल्कि वे [[शुद्ध अवस्था]] हैं तथा रजिस्टर की परिभाषा को घनत्व आव्यूह तक बढ़ाया जा सकता है। | |||
एक <math>n</math> आकार क्वांटम रजिस्टर एक क्वांटम प्रणाली है जिसमें <math>n</math> | एक <math>n</math> आकार क्वांटम रजिस्टर एक क्वांटम प्रणाली है जिसमें <math>n</math> क्वैबिट सम्मिलित हैं। | ||
[[हिल्बर्ट स्थान]] <math>\mathcal{H}</math> जिसमें आंकड़े को क्वांटम रजिस्टर में संग्रहीत किया जाता है जहां <math>\mathcal{H} = \mathcal{H_{n-1}}\otimes\mathcal{H_{n-2}}\otimes\ldots\otimes\mathcal{H_0}</math> <math>\otimes</math> [[टेंसर उत्पाद]] है। | [[हिल्बर्ट स्थान]] <math>\mathcal{H}</math> जिसमें आंकड़े को क्वांटम रजिस्टर में संग्रहीत किया जाता है जहां <math>\mathcal{H} = \mathcal{H_{n-1}}\otimes\mathcal{H_{n-2}}\otimes\ldots\otimes\mathcal{H_0}</math> <math>\otimes</math> [[टेंसर उत्पाद]] है। |
Revision as of 11:54, 20 July 2023
क्वांटम संगणक में क्वांटम रजिस्टर एक प्रणाली है जिसमें क्वैबिट सम्मिलित है[1] और यह प्रक्रमक रजिस्टर का क्वांटम अनुरूप है तथा क्वांटम कंप्यूटर क्वांटम रजिस्टर के भीतर परिपथता करके गणना करते हैं।[2]
परिभाषा
सामान्यतः यह माना जाता है कि रजिस्टर में क्वैबिट होते हैं और यह भी माना जाता है कि रजिस्टर घनत्व आव्यूह नहीं हैं बल्कि वे शुद्ध अवस्था हैं तथा रजिस्टर की परिभाषा को घनत्व आव्यूह तक बढ़ाया जा सकता है।
एक आकार क्वांटम रजिस्टर एक क्वांटम प्रणाली है जिसमें क्वैबिट सम्मिलित हैं।
हिल्बर्ट स्थान जिसमें आंकड़े को क्वांटम रजिस्टर में संग्रहीत किया जाता है जहां टेंसर उत्पाद है।
हिल्बर्ट रिक्त स्थान के आयामों की संख्या इस बात पर निर्भर करती है कि रजिस्टर किस प्रकार की क्वांटम प्रणालियों से बना है जबकि क्यूबिट 2 और क्यूबिट 3-आयामी जटिल स्थान हैं तथा डी-आयामी क्वांटम प्रणाली की एन संख्या से बने रजिस्टर के लिए हमारे पास हिल्बर्ट स्थान है -
रजिस्टर क्वांटम स्थिति को ब्रा-केट संकेतन में लिखा जा सकता है
मूल्य संभाव्यता आयाम हैं जो कि बोर्न नियम संभाव्यता स्वयंसिद्ध और दूसरा स्वयंसिद्ध का कारण है तथा इसलिए रजिस्टर का संभावित स्थान इकाई क्षेत्र की सतह है।
उदाहरण केलिए
- 5-क्विबिट रजिस्टर का क्वांटम वेक्टर एक इकाई वेक्टर है
- 4 क्वट्रिट्स का एक रजिस्टर इसी तरह एक इकाई वेक्टर है
क्वांटम बनाम रजिस्टर
सबसे पहले क्वांटम रजिस्टर के बीच एक वैचारिक अंतर है और फ्लिप फ्लॉप एक रजिस्टर की एक सारणी को संदर्भित करता है तथा आकार क्वांटम रजिस्टर केवल एक संग्रह है।
इसके अलावा आकार रजिस्टर एकल मान को संग्रहीत करने में सक्षम है और संभावनाओं द्वारा फैलाया गया एक बिट्स एक क्वांटम रजिस्टर को संग्रहीत करने में सक्षम है तथा क्वांटम शुद्ध क्वैबिट द्वारा फैलाई गई संभावनाएँ हैं।
उदाहरण के लिए 2-अंश चौड़े रजिस्टर पर विचार करें जो रजिस्टर 2 बिट्स द्वारा दर्शाए गए संभावित मानों में से केवल एक को संग्रहीत करने में सक्षम है -
क्वांटम रजिस्टर परिभाषा का उपयोग करते हुए यदि हम क्वांटम अध्यारोपण में 2 शुद्ध क्वबिट पर विचार करते हैं तो और इससे यह निष्कर्ष निकलता है कि यह एक साथ दो क्यूबिट द्वारा फैले सभी संभावित मूल्यों को संग्रहीत करने में सक्षम है।
संदर्भ
- ↑ Ekert, Artur; Hayden, Patrick; Inamori, Hitoshi (2008). "Basic Concepts in Quantum Computation". सुसंगत परमाणु पदार्थ तरंगें. Les Houches - Ecole d'Ete de Physique Theorique. Vol. 72. pp. 661–701. arXiv:quant-ph/0011013. doi:10.1007/3-540-45338-5_10. ISBN 978-3-540-41047-8. S2CID 53402188.
- ↑ Ömer, Bernhard (2000-01-20). QCL में क्वांटम प्रोग्रामिंग (PDF) (Thesis). p. 52. Retrieved 2021-05-24.
अग्रिम पठन
- Arora, Sanjeev; Barak, Boaz (2016). Computational Complexity: A Modern Approach. Cambridge University Press. pp. 201–236. ISBN 978-0-521-42426-4.