रिकर्सिवली एन्युमरेबल लैंग्वेज: Difference between revisions
No edit summary |
m (Abhishek moved page पुनरावर्ती गणना लैंग्वेज to रिकर्सिवली एन्युमरेबल लैंग्वेज without leaving a redirect) |
(No difference)
|
Revision as of 12:02, 21 July 2023
गणित, तर्क और कंप्यूटर विज्ञान में, एक औपचारिक भाषा को रिकर्सिवली एन्युमरेबल लैंग्वेज (मान्यता देने योग्य, अंशतः निर्धारणीय, अर्ध-निर्धारणीय, ट्यूरिंग-स्वीकार्य या ट्यूरिंग-मान्यता देने योग्य) कहा जाता है यदि यह भाषा के वर्णमाला (कंप्यूटर विज्ञान) के सभी संभावित शब्दों के सेट (गणित) में रिकर्सिवली एन्युमरेबल सेट है अर्थात्, यदि कोई ट्यूरिंग मशीन उपस्थित है जो भाषा के सभी मान्य स्ट्रिंग की गणना करेगी।
औपचारिक भाषाओं के चॉम्स्की पदानुक्रम में रिकर्सिवली एन्युमरेबल लैंग्वेज को टाइप-0 लैंग्वेज के रूप में जाना जाता है। सभी नियमित भाषा, प्रसंग निरपेक्ष (कॉन्टेक्स्ट-फ्री), प्रसंग सापेक्ष (कॉन्टेक्स्ट-सेंसिटिव) और रिकर्सिव भाषाएँ रिकर्सिवली एन्युमरेबल हैं।
सभी रिकर्सिवली एन्युमरेबल लैंग्वेज के वर्ग को आरई (जटिलता) कहा जाता है।
परिभाषाएँ
रिकर्सिवली एन्युमरेबल लैंग्वेज की तीन समकक्ष परिभाषाएँ हैं:
- एक रिकर्सिवली एन्युमरेबल लैंग्वेज जो वर्णमाला पर सभी संभावित शब्दों के सेट(गणित) में एक रिकर्सिवली एन्युमरेबल उपसमुच्चय है।
- रिकर्सिवली एन्युमरेबल लैंग्वेज एक औपचारिक भाषा है जिसके लिए एक ट्यूरिंग मशीन (या अन्य गणना योग्य फ़ंक्शन) उपस्थित है जो भाषा के सभी मान्य स्ट्रिंग की गणना करेगी। ध्यान दें कि यदि भाषा अपरिमित है तो दी गई गणना एल्गोरिदम का चयन किया जा सकता है जिससे यह पुनरावर्तन से बच सके क्योंकि हम परीक्षण कर सकते हैं कि संख्या n के लिए निर्मित स्ट्रिंग "पहले से ही" उस संख्या के लिए निर्मित है जो n से कम है। यदि यह पहले से ही निर्मित है तो इसके स्थान पर इनपुट n+1 के लिए आउटपुट का उपयोग करें (रिकर्सिवली) किंतु पुनः परीक्षण करें कि क्या यह "नया" है।
- रिकर्सिवली एन्युमरेबल लैंग्वेज एक औपचारिक भाषा है जिसके लिए एक ट्यूरिंग मशीन (या अन्य गणना योग्य फ़ंक्शन) उपस्थित है जो इनपुट के रूप में भाषा में किसी भी स्ट्रिंग के साथ प्रस्तुत होने पर रुक जाएगी तथा स्वीकार कर लेगी, किंतु भाषा में एक स्ट्रिंग के साथ नहीं प्रस्तुत होने पर या तो रुक सकती है और अस्वीकार कर सकती है या सदैव के लिए लूप कर सकती है। इसकी तुलना रिकर्सिव भाषाओं से करें जिनके लिए आवश्यक है कि ट्यूरिंग मशीन सभी स्थितियों में रुक जाए।
सभी नियमित भाषा, प्रसंग निरपेक्ष (कॉन्टेक्स्ट-फ्री), प्रसंग सापेक्ष (कॉन्टेक्स्ट-सेंसिटिव) और रिकर्सिव लैंग्वेज रिकर्सिवली एन्युमरेबल हैं।
पोस्ट के प्रमेय से पता चलता है कि आरई अपने पूरक (जटिलता) सह-आरई के साथ अंकगणितीय पदानुक्रम के प्रथम स्तर के अनुरूप है।
उदाहरण
ट्यूरिंग मशीनों को रोकने का सेट रिकर्सिवली एन्युमरेबल है किंतु रिकर्सिव नहीं है। वास्तव में, कोई ट्यूरिंग मशीन चला सकता है और यदि मशीन रुकती है तो उसे स्वीकार कर सकता है, इसलिए यह रिकर्सिवली एन्युमरेबल है। दूसरी ओर समस्या अनिर्णीत है।
कुछ अन्य रिकर्सिवली एन्युमरेबल लैंग्वेज जो रिकर्सिव नहीं हैं उनमें सम्मिलित हैं:
संवृत्त गुण
रिकर्सिवली एन्युमरेबल लैंग्वेज(आरईएल) निम्नलिखित परिचालनों के अंतर्गत संवृत्त हैं। अर्थात्, यदि L और P दो रिकर्सिवली एन्युमरेबल लैंग्वेज हैं तो निम्नलिखित भाषाएँ भी रिकर्सिवली एन्युमरेबल हैं:
- L का द क्लीन स्टार
- L और P का संयोजन
- संघ (सेट सिद्धांत)
- प्रतिच्छेदन(सेट सिद्धांत) .
रिकर्सिवली एन्युमरेबल लैंग्वेज सेट अंतर या पूरकता के अंतर्गत संवृत्त नहीं होती हैं। यदि रिकर्सिव है तो सेट अंतर रिकर्सिवली एन्युमरेबल है। यदि रिकर्सिवली एन्युमरेबल है, तो का पूरक रिकर्सिवली एन्युमरेबल है यदि और केवल यदि भी रिकर्सिव है।
यह भी देखें
- संगणनीय एन्युमरेबल सेट
- रिकर्शन
संदर्भ
- Sipser, M. (1996), Introduction to the Theory of Computation, PWS Publishing Co.
- Kozen, D.C. (1997), Automata and Computability, Springer.