वर्ण (गणित): Difference between revisions

From Vigyanwiki
No edit summary
m (Neeraja moved page चरित्र (गणित) to वर्ण (गणित) without leaving a redirect)
(No difference)

Revision as of 15:49, 25 July 2023

गणित में, वर्ण (सामान्यतः) समूह से एक क्षेत्र तक विशेष प्रकार का फलन (जैसे कि सम्मिश्र संख्याएं) होता है । कम से कम दो भिन्न, लेकिन अतिव्यापी अर्थ हैं।[1] शब्द "वर्ण " के अन्य उपयोग लगभग सदैव योग्य होते हैं।

गुणनात्मक वर्ण

समूह G पर एक गुणनात्मक वर्ण (या रैखिक वर्ण, या बस वर्ण) G से एक फ़ील्ड के गुणक समूह (आर्टिन1966) तक एक समूह समरूपता है, जो सामान्यतः सम्मिश्र संख्याओं का क्षेत्र होता है। यदि G कोई समूह है, तो इन आकारिकी का समुच्चय Ch(G) बिंदुवार गुणन के तहत एबेलियन समूह बनाता है।

इस समूह को G के वर्ण समूह के रूप में जाना जाता है। कभी-कभी केवल एकात्मक वर्णों पर विचार किया जाता है (इस प्रकार छवि इकाई वृत्त में होती है); ऐसी अन्य समरूपताएँ अर्ध-वर्ण कहलाती हैं। डिरिचलेट वर्णों को इस परिभाषा के एक विशेष स्तिथि के रूप में देखा जा सकता है।

गुणनात्मक वर्ण रैखिक रूप से स्वतंत्र होते हैं, अर्थात यदि समूह G पर अलग-अलग वर्ण हैं तो से यह निम्नानुसार है कि

प्रतिनिधित्व का वर्ण

वर्ण : प्रतिनिधित्व एक क्षेत्र F पर परिमित-आयामी सदिश स्थान V पर समूह G का प्रतिनिधित्व (सेरे 1977) का अनुरेख है, अर्थात।

के लिए

सामान्य तौर पर, अनुरेख समूह समरूपता नहीं है, न ही अनुरेख का समूह समूह बनाता है। एक-आयामी अभ्यावेदन के वर्ण एक-आयामी अभ्यावेदन के समान होते हैं, इसलिए गुणात्मक वर्ण की उपरोक्त धारणा को उच्च-आयामी वर्णों के एक विशेष स्तिथि के रूप में देखा जा सकता है। वर्णों का उपयोग करके प्रतिनिधित्व के अध्ययन को "वर्ण सिद्धांत" कहा जाता है और इस संदर्भ में एक-आयामी वर्णों को "रैखिक वर्ण" भी कहा जाता है।

वैकल्पिक परिभाषा

यदि में प्रतिनिधित्व के साथ परिमित एबेलियन समूह तक सीमित है (अर्थात् निम्नलिखित वैकल्पिक परिभाषा उपरोक्त के समतुल्य होगी (एबेलियन समूहों के लिए, प्रत्येक मैट्रिक्स प्रतिनिधित्व अभ्यावेदन के प्रत्यक्ष योग में विघटित हो जाता है। गैर-एबेलियन समूहों के लिए, मूल परिभाषा इस से अधिक सामान्य होगी):

वर्ण समूह की समूह समरूपता है। अर्थात सभी के लिए

यदि परिमित एबेलियन समूह है, तो वर्ण हार्मोनिक्स की भूमिका निभाते हैं। अनंत एबेलियन समूहों के लिए, उपरोक्त को : द्वारा प्रतिस्थापित किया जाएगा जहां वृत्त समूह है।

यह भी देखें

  • वर्ण समूह
  • डिरिचलेट वर्ण
  • हरीश-चन्द्र वर्ण
  • हेके वर्ण
  • अनन्तिमल वर्ण
  • वैकल्पिक वर्ण
  • विशेषता (गणित)
  • पोंट्रीगिन द्वैत

संदर्भ

  1. "nLab में चरित्र". ncatlab.org. Retrieved 2017-10-31.

बाहरी संबंध