कोहोमोलोजी रिंग: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 37: | Line 37: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 08/07/2023]] | [[Category:Created On 08/07/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 16:03, 25 July 2023
गणित में, विशेष रूप से बीजगणितीय टोपोलॉजी में, टोपोलॉजिकल समिष्ट X की कोहोमोलॉजी रिंग, X के कोहोमोलॉजी समूहों से बनी एक रिंग होती है, जिसमें कप उत्पाद रिंग गुणन के रूप में फलन करता है। यहां 'कोहोमोलॉजी' को सामान्यतः एकवचन कोहोमोलॉजी के रूप में समझा जाता है, लेकिन रिंग संरचना अन्य सिद्धांतों जैसे डी राम कोहोमोलॉजी में भी सम्मलित है। यह कार्यात्मक भी है: रिक्त समिष्ट के निरंतर मानचित्रण के लिए कोहॉमोलॉजी रिंगों पर रिंग होमोमोर्फिज्म प्राप्त होता है, जो विरोधाभासी है।
विशेष रूप से, कोहोमोलोजी समूहों का अनुक्रम दिया गया Hk(X;R) क्रमविनिमेय रिंग R में गुणांक के साथ X पर (सामान्यतः R 'Z' है)n, Z, Q, R, या C) कोई कप उत्पाद को परिभाषित कर सकता है, जो रूप लेता है
कप उत्पाद कोहोमोलॉजी समूहों के मॉड्यूल के प्रत्यक्ष योग पर गुणन देता है
यह गुणन H हो जाता है•(X;R) एक रिंग में। वास्तव में, यह स्वाभाविक रूप से एक 'N'- वर्गीकृत रिंग है जिसमें गैर-ऋणात्मक पूर्णांक k डिग्री के रूप में फलन करता है। कप उत्पाद इस श्रेणीकरण का सम्मान करता है।
कोहॉमोलॉजी रिंग इस अर्थ में श्रेणीबद्ध-कम्यूटेटिव है कि कप उत्पाद श्रेणीकरण द्वारा निर्धारित संकेत तक पहुंचता है। विशेष रूप से, डिग्री k और ℓ के शुद्ध तत्वों के लिए; अपने पास
कोहोमोलॉजी रिंग से प्राप्त संख्यात्मक अपरिवर्तनीय कप-लंबाई है, जिसका अर्थ है डिग्री ≥ 1 के वर्गीकृत तत्वों की अधिकतम संख्या जिसे गुणा करने पर गैर-शून्य परिणाम मिलता है। उदाहरण के लिए समष्टि प्रक्षेप्य समिष्ट की कप-लंबाई उसके समष्टि आयाम के समकक्ष होती है।
उदाहरण
- कहाँ .
- कहाँ .
- कहाँ .
- कहाँ .
- कहाँ .
- कहाँ .
- कुनेथ सूत्र के अनुसार, n प्रतियों के कार्टेशियन उत्पाद की मॉड 2 कोहोमोलॉजी रिंग गुणांकों के साथ n चरों में एक बहुपद वलय है .
- वेज सम्स का अधीन किया हुआ कोहोमोलॉजी रिंग उनके कम किए गए कोहोमोलॉजी रिंग का प्रत्यक्ष उत्पाद है।
- डिग्री 0 भाग के अतिरिक्त निलंबन की कोहोमोलॉजी रिंग लुप्त हो जाती है।
यह भी देखें
संदर्भ
- Novikov, S. P. (1996). Topology I, General Survey. Springer-Verlag. ISBN 7-03-016673-6.
- Hatcher, Allen (2002), Algebraic Topology, Cambridge: Cambridge University Press, ISBN 0-521-79540-0.