अभिज्ञेयता (आईडेन्टिफिएबिलिटी): Difference between revisions
m (Abhishek moved page पहचान to अभिज्ञेयता (आईडेन्टिफिएबिलिटी) without leaving a redirect) |
No edit summary |
||
Line 1: | Line 1: | ||
{{For-multi|अर्थशास्त्र में संबंधित समस्या|पैरामीटर पहचान समस्या|सिस्टम पहचान के क्षेत्र में पहचान की अवधारणा|संरचनात्मक पहचान}} | {{For-multi|अर्थशास्त्र में संबंधित समस्या|पैरामीटर पहचान समस्या|सिस्टम पहचान के क्षेत्र में पहचान की अवधारणा|संरचनात्मक पहचान}} | ||
आंकड़ों में, ''' | आंकड़ों में, '''अभिज्ञेयता (आईडेन्टिफिएबिलिटी)''' ऐसी गुण है जिसे [[सांख्यिकीय मॉडल]] को संभव होने के लिए स्पष्ट सांख्यिकीय अनुमान के लिए संतुष्ट करना होगा। मॉडल की अभिज्ञेयता तब की जा सकती है जब अनंत संख्या में अवलोकन प्राप्त करने के बाद इस मॉडल के अंतर्निहित मापदंडों के वास्तविक मूल्यों को सीखना सैद्धांतिक रूप से संभव हो। गणितीय रूप से, यह कहने के सामान है कि मापदंडों के विभिन्न मूल्यों को अवलोकन योग्य वेरिएबल के विभिन्न संभाव्यता वितरण उत्पन्न करना चाहिए। सामान्यतः मॉडल को केवल कुछ तकनीकी प्रतिबंधों के तहत ही अभिज्ञेयताा जा सकता है, ऐसी स्थिति में इन आवश्यकताओं के समूह को अभिज्ञेयता की स्थिति कहा जाता है। | ||
इस प्रकार के मॉडल जो | इस प्रकार के मॉडल जो अभिज्ञेयताने योग्य होने में विफल रहता है उसे गैर-अभिज्ञेयता योग्य या अज्ञात कहा जाता है: दो या दो से अधिक [[सांख्यिकीय पैरामीटर]] [[अवलोकन संबंधी तुल्यता]] हैं। कुछ स्थितियों में, तथापि मॉडल गैर-अभिज्ञेयता योग्य हो, फिर भी मॉडल मापदंडों के निश्चित उपसमूह के वास्तविक मूल्यों को सीखना संभव है। इस स्थिति में हम कहते हैं कि मॉडल आंशिक रूप से अभिज्ञेयताे जाने योग्य है। अन्य स्थितियों में पैरामीटर स्पेस के निश्चित सीमित क्षेत्र तक वास्तविक पैरामीटर का स्थान सीखना संभव हो सकता है, जिस स्थिति में मॉडल को अभिज्ञेयताने योग्य समूह किया जाता है। | ||
मॉडल गुणों की कड़ाई से सैद्धांतिक खोज के अलावा, | मॉडल गुणों की कड़ाई से सैद्धांतिक खोज के अलावा, अभिज्ञेयता योग्यता विश्लेषण का उपयोग करके प्रयोगात्मक डेटा समूह के साथ मॉडल का परीक्षण करते समय अभिज्ञेयता क्षमता को व्यापक दायरे में संदर्भित किया जा सकता है।<ref> | ||
{{Cite journal| doi = 10.1093/bioinformatics/btp358| volume = 25| issue = 15| pages = 1923–1929| last1 = Raue| first1 = A.| last2 = Kreutz| first2 = C.| last3 = Maiwald| first3 = T.| last4 = Bachmann| first4 = J.| last5 = Schilling| first5 = M.| last6 = Klingmuller| first6 = U.| last7 = Timmer| first7 = J.| title = Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood| journal = Bioinformatics| date = 2009-08-01| pmid=19505944| doi-access = free}} | {{Cite journal| doi = 10.1093/bioinformatics/btp358| volume = 25| issue = 15| pages = 1923–1929| last1 = Raue| first1 = A.| last2 = Kreutz| first2 = C.| last3 = Maiwald| first3 = T.| last4 = Bachmann| first4 = J.| last5 = Schilling| first5 = M.| last6 = Klingmuller| first6 = U.| last7 = Timmer| first7 = J.| title = Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood| journal = Bioinformatics| date = 2009-08-01| pmid=19505944| doi-access = free}} | ||
</ref> | </ref> | ||
==परिभाषा== | ==परिभाषा== | ||
माना <math> \mathcal{P}=\{P_\theta:\theta\in\Theta\} </math> पैरामीटर स्पेस के साथ सांख्यिकीय मॉडल <math>\Theta</math> बनें . हम ऐसा कहते हैं <math>\mathcal{P}</math> यदि मानचित्रण हो तो | माना <math> \mathcal{P}=\{P_\theta:\theta\in\Theta\} </math> पैरामीटर स्पेस के साथ सांख्यिकीय मॉडल <math>\Theta</math> बनें . हम ऐसा कहते हैं <math>\mathcal{P}</math> यदि मानचित्रण हो तो अभिज्ञेयता योग्य है <math>\theta\mapsto P_\theta</math> आक्षेप है|:<ref>{{harvnb|Lehmann|Casella|1998|loc=Ch. 1, Definition 5.2}}</ref> | ||
: <math> | : <math> | ||
P_{\theta_1}=P_{\theta_2} \quad\Rightarrow\quad \theta_1=\theta_2 \quad\ \text{for all } \theta_1,\theta_2\in\Theta. | P_{\theta_1}=P_{\theta_2} \quad\Rightarrow\quad \theta_1=\theta_2 \quad\ \text{for all } \theta_1,\theta_2\in\Theta. | ||
Line 16: | Line 16: | ||
मानचित्र की व्युत्क्रमणीयता के अर्थ में मॉडल की | मानचित्र की व्युत्क्रमणीयता के अर्थ में मॉडल की अभिज्ञेयता <math>\theta\mapsto P_\theta</math> यदि मॉडल को अनिश्चित काल तक देखा जा सकता है तो यह मॉडल के वास्तविक पैरामीटर को सीखने में सक्षम होने के सामान है। वास्तव में, यदि {''X<sub>t</sub>''} ⊆ ''S'' मॉडल से अवलोकनों का क्रम है, फिर बड़ी संख्या के शसक्त नियम द्वारा, | ||
: <math> | : <math> | ||
\frac 1 T \sum_{t=1}^T \mathbf{1}_{\{X_t\in A\}} \ \xrightarrow{\text{a.s.}}\ \Pr[X_t\in A], | \frac 1 T \sum_{t=1}^T \mathbf{1}_{\{X_t\in A\}} \ \xrightarrow{\text{a.s.}}\ \Pr[X_t\in A], | ||
</math> | </math> | ||
प्रत्येक मापने योग्य समूह ''A'' ⊆ ''S'' के लिए (यहां '1'<sub>{...}</sub> [[सूचक कार्य]] है)। इस प्रकार, अनंत संख्या में प्रेक्षणों के साथ हम वास्तविक संभाव्यता वितरण P<sub>0</sub> ज्ञात करने में सक्षम होंगे मॉडल में, और चूंकि उपरोक्त | प्रत्येक मापने योग्य समूह ''A'' ⊆ ''S'' के लिए (यहां '1'<sub>{...}</sub> [[सूचक कार्य]] है)। इस प्रकार, अनंत संख्या में प्रेक्षणों के साथ हम वास्तविक संभाव्यता वितरण P<sub>0</sub> ज्ञात करने में सक्षम होंगे मॉडल में, और चूंकि उपरोक्त अभिज्ञेयता की स्थिति के लिए मानचित्र की आवश्यकता है <math>\theta\mapsto P_\theta</math> विपरीत हो, हम उस पैरामीटर का सही मान भी ढूंढने में सक्षम होंगे जो दिए गए वितरण ''P''<sub>0</sub> उत्पन्न करता है. | ||
==उदाहरण== | ==उदाहरण== | ||
Line 37: | Line 37: | ||
\Longleftrightarrow {} & x^2 \left(\frac 1 {\sigma_1^2}-\frac 1 {\sigma_2^2}\right) - 2x\left(\frac{\mu_1}{\sigma_1^2}-\frac{\mu_2}{\sigma_2^2} \right) + \left(\frac{\mu_1^2}{\sigma_1^2}-\frac{\mu_2^2}{\sigma_2^2}+\ln\sigma_1-\ln\sigma_2\right) = 0 | \Longleftrightarrow {} & x^2 \left(\frac 1 {\sigma_1^2}-\frac 1 {\sigma_2^2}\right) - 2x\left(\frac{\mu_1}{\sigma_1^2}-\frac{\mu_2}{\sigma_2^2} \right) + \left(\frac{\mu_1^2}{\sigma_1^2}-\frac{\mu_2^2}{\sigma_2^2}+\ln\sigma_1-\ln\sigma_2\right) = 0 | ||
\end{align} </math> | \end{align} </math> | ||
यह अभिव्यक्ति लगभग सभी x के लिए शून्य के सामान है, जब इसके सभी गुणांक शून्य के सामान हों, जो केवल तभी संभव है जब |''σ''<sub>1</sub>| = |''σ''<sub>2</sub>| और ''μ''<sub>1</sub> = ''μ''<sub>2</sub>. चूँकि स्केल पैरामीटर में σ शून्य से अधिक होने तक सीमित है, हम यह निष्कर्ष निकालते हैं कि मॉडल | यह अभिव्यक्ति लगभग सभी x के लिए शून्य के सामान है, जब इसके सभी गुणांक शून्य के सामान हों, जो केवल तभी संभव है जब |''σ''<sub>1</sub>| = |''σ''<sub>2</sub>| और ''μ''<sub>1</sub> = ''μ''<sub>2</sub>. चूँकि स्केल पैरामीटर में σ शून्य से अधिक होने तक सीमित है, हम यह निष्कर्ष निकालते हैं कि मॉडल अभिज्ञेयताने योग्य है: | ||
ƒ<sub>''θ''1</sub> = ƒ<sub>''θ''2</sub> ⇔ ''θ''<sub>1</sub> = ''θ''<sub>2</sub>. | ƒ<sub>''θ''1</sub> = ƒ<sub>''θ''2</sub> ⇔ ''θ''<sub>1</sub> = ''θ''<sub>2</sub>. | ||
Line 46: | Line 46: | ||
y = \beta'x + \varepsilon, \quad \mathrm{E}[\,\varepsilon\mid x\,]=0 | y = \beta'x + \varepsilon, \quad \mathrm{E}[\,\varepsilon\mid x\,]=0 | ||
</math> | </math> | ||
(जहाँ ′ अव्युह [[ खिसकाना |स्थानांतरित]] को दर्शाता है)। तब पैरामीटर β | (जहाँ ′ अव्युह [[ खिसकाना |स्थानांतरित]] को दर्शाता है)। तब पैरामीटर β अभिज्ञेयताे जाने योग्य है यदि और केवल यदि अव्युह <math> \mathrm{E}[xx'] </math> विपरीत है. इस प्रकार, यह मॉडल में अभिज्ञेयता की स्थिति है। | ||
===उदाहरण 3=== | ===उदाहरण 3=== | ||
Line 54: | Line 54: | ||
x = x^* + \eta, | x = x^* + \eta, | ||
\end{cases} </math> | \end{cases} </math> | ||
जहां (ε,η,x*) शून्य अपेक्षित मान और अज्ञात भिन्नताओं के साथ संयुक्त रूप से सामान्य स्वतंत्र यादृच्छिक वेरिएबल हैं, और केवल वेरिएबल (x,y) देखे जाते हैं। तब यह मॉडल | जहां (ε,η,x*) शून्य अपेक्षित मान और अज्ञात भिन्नताओं के साथ संयुक्त रूप से सामान्य स्वतंत्र यादृच्छिक वेरिएबल हैं, और केवल वेरिएबल (x,y) देखे जाते हैं। तब यह मॉडल अभिज्ञेयता योग्य नहीं है,<ref name="riersol">{{harvnb|Reiersøl|1950}}</ref> केवल उत्पाद βσ²<sub style=position:relative;left:-.5em >∗</sub> है (जहां σ²<sub style=position:relative;left:-.5em >∗</sub> का प्रसरण है अव्यक्त प्रतिगामी x*). यह भी निर्धारित अभिज्ञेयता मॉडल का उदाहरण है: यद्यपि β का स्पष्ट मान नहीं सीखा जा सकता है, हम गारंटी दे सकते हैं कि यह अंतराल (β) में कहीं स्थित होना चाहिए (''β''<sub>yx</sub>, 1÷''β''<sub>xy</sub>), जहां ''β''<sub>yx</sub>, और ''β''<sub>xy</sub> पर y के सामान्य न्यूनतम वर्ग प्रतिगमन में गुणांक है y पर x के OLS प्रतिगमन में गुणांक है।<ref>{{harvnb|Casella|Berger|2001|page=583}}</ref> | ||
यदि हम सामान्यता की धारणा को त्याग देते हैं और चाहते हैं कि x* सामान्य रूप से वितरित 'नहीं' हो, केवल स्वतंत्रता की स्थिति ε ⊥ η ⊥ x* को बनाए रखते हुए, तो मॉडल | यदि हम सामान्यता की धारणा को त्याग देते हैं और चाहते हैं कि x* सामान्य रूप से वितरित 'नहीं' हो, केवल स्वतंत्रता की स्थिति ε ⊥ η ⊥ x* को बनाए रखते हुए, तो मॉडल अभिज्ञेयताने योग्य हो जाता है।<ref name="riersol" /> | ||
==यह भी देखें== | ==यह भी देखें== | ||
* [[सिस्टम पहचान]] | * [[सिस्टम पहचान|सिस्टम अभिज्ञेयता]] | ||
* [[संरचनात्मक पहचान]] | * [[संरचनात्मक पहचान|संरचनात्मक अभिज्ञेयता]] | ||
* अवलोकनशीलता | * अवलोकनशीलता | ||
* [[एक साथ समीकरण मॉडल|समकालिक समीकरण मॉडल]] | * [[एक साथ समीकरण मॉडल|समकालिक समीकरण मॉडल]] |
Revision as of 13:13, 14 July 2023
आंकड़ों में, अभिज्ञेयता (आईडेन्टिफिएबिलिटी) ऐसी गुण है जिसे सांख्यिकीय मॉडल को संभव होने के लिए स्पष्ट सांख्यिकीय अनुमान के लिए संतुष्ट करना होगा। मॉडल की अभिज्ञेयता तब की जा सकती है जब अनंत संख्या में अवलोकन प्राप्त करने के बाद इस मॉडल के अंतर्निहित मापदंडों के वास्तविक मूल्यों को सीखना सैद्धांतिक रूप से संभव हो। गणितीय रूप से, यह कहने के सामान है कि मापदंडों के विभिन्न मूल्यों को अवलोकन योग्य वेरिएबल के विभिन्न संभाव्यता वितरण उत्पन्न करना चाहिए। सामान्यतः मॉडल को केवल कुछ तकनीकी प्रतिबंधों के तहत ही अभिज्ञेयताा जा सकता है, ऐसी स्थिति में इन आवश्यकताओं के समूह को अभिज्ञेयता की स्थिति कहा जाता है।
इस प्रकार के मॉडल जो अभिज्ञेयताने योग्य होने में विफल रहता है उसे गैर-अभिज्ञेयता योग्य या अज्ञात कहा जाता है: दो या दो से अधिक सांख्यिकीय पैरामीटर अवलोकन संबंधी तुल्यता हैं। कुछ स्थितियों में, तथापि मॉडल गैर-अभिज्ञेयता योग्य हो, फिर भी मॉडल मापदंडों के निश्चित उपसमूह के वास्तविक मूल्यों को सीखना संभव है। इस स्थिति में हम कहते हैं कि मॉडल आंशिक रूप से अभिज्ञेयताे जाने योग्य है। अन्य स्थितियों में पैरामीटर स्पेस के निश्चित सीमित क्षेत्र तक वास्तविक पैरामीटर का स्थान सीखना संभव हो सकता है, जिस स्थिति में मॉडल को अभिज्ञेयताने योग्य समूह किया जाता है।
मॉडल गुणों की कड़ाई से सैद्धांतिक खोज के अलावा, अभिज्ञेयता योग्यता विश्लेषण का उपयोग करके प्रयोगात्मक डेटा समूह के साथ मॉडल का परीक्षण करते समय अभिज्ञेयता क्षमता को व्यापक दायरे में संदर्भित किया जा सकता है।[1]
परिभाषा
माना पैरामीटर स्पेस के साथ सांख्यिकीय मॉडल बनें . हम ऐसा कहते हैं यदि मानचित्रण हो तो अभिज्ञेयता योग्य है आक्षेप है|:[2]
इस परिभाषा का अर्थ है कि θ के अलग-अलग मान अलग-अलग संभाव्यता वितरण के अनुरूप होने चाहिए: यदि θ1≠θ2, तो Pθ1≠Pθ2.[3] यदि वितरण को संभाव्यता घनत्व फलन (पीडीएफ) के संदर्भ में परिभाषित किया गया है, तो दो पीडीएफ को केवल तभी अलग माना जाना चाहिए, जब वे गैर-शून्य माप के समुच्चय पर भिन्न हों (उदाहरण के लिए दो फलन ƒ1(x) = 10 ≤ x < 1 and ƒ2(x) = 10 ≤ x ≤ 1 केवल एक बिंदु x = 1 पर भिन्न होता है - माप शून्य का एक समुच्चय - और इस प्रकार इसे अलग पीडीएफ के रूप में नहीं माना जा सकता है)।।
मानचित्र की व्युत्क्रमणीयता के अर्थ में मॉडल की अभिज्ञेयता यदि मॉडल को अनिश्चित काल तक देखा जा सकता है तो यह मॉडल के वास्तविक पैरामीटर को सीखने में सक्षम होने के सामान है। वास्तव में, यदि {Xt} ⊆ S मॉडल से अवलोकनों का क्रम है, फिर बड़ी संख्या के शसक्त नियम द्वारा,
प्रत्येक मापने योग्य समूह A ⊆ S के लिए (यहां '1'{...} सूचक कार्य है)। इस प्रकार, अनंत संख्या में प्रेक्षणों के साथ हम वास्तविक संभाव्यता वितरण P0 ज्ञात करने में सक्षम होंगे मॉडल में, और चूंकि उपरोक्त अभिज्ञेयता की स्थिति के लिए मानचित्र की आवश्यकता है विपरीत हो, हम उस पैरामीटर का सही मान भी ढूंढने में सक्षम होंगे जो दिए गए वितरण P0 उत्पन्न करता है.
उदाहरण
उदाहरण 1
माना सामान्य वितरण स्थान-पैमाने पर वर्ग बनें:
जब
यह अभिव्यक्ति लगभग सभी x के लिए शून्य के सामान है, जब इसके सभी गुणांक शून्य के सामान हों, जो केवल तभी संभव है जब |σ1| = |σ2| और μ1 = μ2. चूँकि स्केल पैरामीटर में σ शून्य से अधिक होने तक सीमित है, हम यह निष्कर्ष निकालते हैं कि मॉडल अभिज्ञेयताने योग्य है:
ƒθ1 = ƒθ2 ⇔ θ1 = θ2.
उदाहरण 2
माना मानक रैखिक प्रतिगमन मॉडल बनें:
(जहाँ ′ अव्युह स्थानांतरित को दर्शाता है)। तब पैरामीटर β अभिज्ञेयताे जाने योग्य है यदि और केवल यदि अव्युह विपरीत है. इस प्रकार, यह मॉडल में अभिज्ञेयता की स्थिति है।
उदाहरण 3
कल्पना करना वेरिएबल में शास्त्रीय त्रुटि रैखिक मॉडल है:
जहां (ε,η,x*) शून्य अपेक्षित मान और अज्ञात भिन्नताओं के साथ संयुक्त रूप से सामान्य स्वतंत्र यादृच्छिक वेरिएबल हैं, और केवल वेरिएबल (x,y) देखे जाते हैं। तब यह मॉडल अभिज्ञेयता योग्य नहीं है,[4] केवल उत्पाद βσ²∗ है (जहां σ²∗ का प्रसरण है अव्यक्त प्रतिगामी x*). यह भी निर्धारित अभिज्ञेयता मॉडल का उदाहरण है: यद्यपि β का स्पष्ट मान नहीं सीखा जा सकता है, हम गारंटी दे सकते हैं कि यह अंतराल (β) में कहीं स्थित होना चाहिए (βyx, 1÷βxy), जहां βyx, और βxy पर y के सामान्य न्यूनतम वर्ग प्रतिगमन में गुणांक है y पर x के OLS प्रतिगमन में गुणांक है।[5]
यदि हम सामान्यता की धारणा को त्याग देते हैं और चाहते हैं कि x* सामान्य रूप से वितरित 'नहीं' हो, केवल स्वतंत्रता की स्थिति ε ⊥ η ⊥ x* को बनाए रखते हुए, तो मॉडल अभिज्ञेयताने योग्य हो जाता है।[4]
यह भी देखें
संदर्भ
उद्धरण
- ↑ Raue, A.; Kreutz, C.; Maiwald, T.; Bachmann, J.; Schilling, M.; Klingmuller, U.; Timmer, J. (2009-08-01). "Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood". Bioinformatics. 25 (15): 1923–1929. doi:10.1093/bioinformatics/btp358. PMID 19505944.
- ↑ Lehmann & Casella 1998, Ch. 1, Definition 5.2
- ↑ van der Vaart 1998, p. 62
- ↑ 4.0 4.1 Reiersøl 1950
- ↑ Casella & Berger 2001, p. 583
स्रोत
- Casella, George; Berger, Roger L. (2002), Statistical Inference (2nd ed.), ISBN 0-534-24312-6, LCCN 2001025794
- Hsiao, Cheng (1983), Identification, Handbook of Econometrics, Vol. 1, Ch.4, North-Holland Publishing Company
- Lehmann, E. L.; Casella, G. (1998), Theory of Point Estimation (2nd ed.), Springer, ISBN 0-387-98502-6
- Reiersøl, Olav (1950), "Identifiability of a linear relation between variables which are subject to error", Econometrica, 18 (4): 375–389, doi:10.2307/1907835, JSTOR 1907835
- van der Vaart, A. W. (1998), Asymptotic Statistics, Cambridge University Press, ISBN 978-0-521-49603-2
{{citation}}
: CS1 maint: ref duplicates default (link)
अग्रिम पठन
- Walter, É.; Pronzato, L. (1997), Identification of Parametric Models from Experimental Data, Springer
अर्थमिति
- Lewbel, Arthur (2019-12-01). "पहचान चिड़ियाघर: अर्थमिति में पहचान का अर्थ". Journal of Economic Literature. American Economic Association. 57 (4): 835–903. doi:10.1257/jel.20181361. ISSN 0022-0515. S2CID 125792293.
- Matzkin, Rosa L. (2013). "संरचनात्मक आर्थिक मॉडल में गैर-पैरामीट्रिक पहचान". Annual Review of Economics. 5 (1): 457–486. doi:10.1146/annurev-economics-082912-110231.
- Rothenberg, Thomas J. (1971). "पैरामीट्रिक मॉडल में पहचान". Econometrica. 39 (3): 577–591. doi:10.2307/1913267. ISSN 0012-9682. JSTOR 1913267.
श्रेणी:अनुमान सिद्धांत