काल्पनिक अवयव: Difference between revisions

From Vigyanwiki
m (5 revisions imported from alpha:काल्पनिक_तत्व)
No edit summary
Line 22: Line 22:
|journal=Journal of Symbolic Logic |volume=48 |year=1983|issue= 4|pages= 1151–1170|doi=10.2307/2273680|jstor=2273680 }}
|journal=Journal of Symbolic Logic |volume=48 |year=1983|issue= 4|pages= 1151–1170|doi=10.2307/2273680|jstor=2273680 }}
*{{Citation | last1=Shelah | first1=Saharon | author1-link=Saharon Shelah | title=Classification theory and the number of nonisomorphic models | origyear=1978 | publisher=Elsevier | edition=2nd | series=Studies in Logic and the Foundations of Mathematics | isbn=978-0-444-70260-9 | year=1990 | url-access=registration | url=https://archive.org/details/classificationth0092shel }}
*{{Citation | last1=Shelah | first1=Saharon | author1-link=Saharon Shelah | title=Classification theory and the number of nonisomorphic models | origyear=1978 | publisher=Elsevier | edition=2nd | series=Studies in Logic and the Foundations of Mathematics | isbn=978-0-444-70260-9 | year=1990 | url-access=registration | url=https://archive.org/details/classificationth0092shel }}
[[Category: मॉडल सिद्धांत]]


[[Category: Machine Translated Page]]
[[Category:Created On 20/07/2023]]
[[Category:Created On 20/07/2023]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page]]
[[Category:Templates Vigyan Ready]]
[[Category:मॉडल सिद्धांत]]

Revision as of 10:27, 27 July 2023

एक मॉडल सिद्धांत में, गणित की शाखा, संरचना का काल्पनिक अवयव साधारणतया एक निश्चित तुल्यता वर्ग है। अतः इन्हें शेला (1990) द्वारा प्रस्तुत किया गया था, और कल्पनाओं का उन्मूलन पोइज़ैट (1983) द्वारा प्रस्तुत किया गया था।

परिभाषाएँ

  • M कुछ सिद्धांत (गणितीय तर्क) का एक मॉडल (मॉडल सिद्धांत) है।
  • 'x' और 'y' कुछ प्राकृतिक संख्या n के लिए, चरों के n-टपल को दर्शाते हैं।
  • एक 'समतुल्यता सूत्र' सुगठित सूत्र φ('x', 'y') है जो सममित संबंध और सकर्मक संबंध द्विआधारी संबंध है। इस प्रकार से इसका प्रांत Mn के अवयवों 'a' का समुच्चय (गणित) है, जैसे कि φ('a', 'a'); यह अपने प्रांत पर एक तुल्यता संबंध है।
  • M का एक 'काल्पनिक अवयव' 'a'/φ तुल्यता वर्ग 'a' के साथ तुल्यता सूत्र φ है।
  • यदि प्रत्येक काल्पनिक अवयव a/φ के लिए एक सूत्र θ(x, y) है, तो M में काल्पनिकताओं का उन्मूलन है, ताकि एक अद्वितीय टपल b हो ताकि a के समतुल्य वर्ग में टपल x सम्मिलित हो जैसे कि θ(x, b)
  • एक मॉडल में 'कल्पनाओं का समान उन्मूलन' होता है यदि सूत्र θ को 'a' से स्वतंत्र रूप से चुना जा सकता है।
  • एक सिद्धांत में 'कल्पनाओं का उन्मूलन' होता है यदि उस सिद्धांत का प्रत्येक मॉडल ऐसा करता है (और इसी प्रकार समान उन्मूलन के लिए भी)।

उदाहरण

संदर्भ

  • Hodges, Wilfrid (1993), Model theory, Cambridge University Press, ISBN 978-0-521-30442-9
  • Poizat, Bruno (1983), "Une théorie de Galois imaginaire. [An imaginary Galois theory]", Journal of Symbolic Logic, 48 (4): 1151–1170, doi:10.2307/2273680, JSTOR 2273680, MR 0727805
  • Shelah, Saharon (1990) [1978], Classification theory and the number of nonisomorphic models, Studies in Logic and the Foundations of Mathematics (2nd ed.), Elsevier, ISBN 978-0-444-70260-9