लैंटर्न संबंध: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (6 revisions imported from alpha:लालटेन_संबंध) |
(No difference)
|
Revision as of 10:36, 27 July 2023
ज्यामितीय टोपोलॉजी में, गणित की शाखा, लैंटर्न संबंध समूह सिद्धांत है जो सतह (टोपोलॉजी) के मानचित्रण वर्ग समूह में कुछ डेन ट्विस्ट के बीच प्रकट होता है। संबंध के सबसे सामान्य संस्करण में सात डेन ट्विस्ट सम्मिलित हैं। इस संबंध की खोज 1979 में डेनिस जॉनसन ने की थी।[1]
सामान्य रूप
लैंटर्न संबंध के सामान्य रूप में तीन छिद्र वाली डिस्क (गणित) के मैपिंग वर्ग समूह में सात डेन ट्विस्ट सम्मिलित हैं,[1][2] जैसा कि दाहिनी ओर चित्र में दिखाया गया है। सम्बन्ध के अनुसार,
- DA DB DC = DR DS DT DU,
जहाँ DA, DB, और DC दाहिने हाथ के डेन नीले वक्रों के चारों ओर मुड़ते हैं इस प्रकार A, B, और C, और DR, DS, DT, DU चार लाल वक्रों के चारों ओर दाहिने हाथ के डेन मोड़ हैं।
ध्यान दें कि डेहन दायीं ओर DR, DS, DT, DU मुड़ जाता है (चूंकि वक्र असंयुक्त समूह हैं, इसलिए जिस क्रम में वे दिखाई देते हैं वह प्रयोजन नहीं रखता है। चूँकि, बाईं ओर तीन डेन ट्विस्ट का चक्रीय क्रम प्रयोजन रखता है:
- DA DB DC = DB DC DA = DC DA DB.
साथ ही, ध्यान दें कि ऊपर लिखी समानताएं वास्तव में होमोटॉपी या होमोटॉपी आइसोटोपी तक समानता हैं, जैसा कि मैपिंग क्लास समूह में सामान्य है।
सामान्य सतह
यद्यपि हमने तीन छिद्र वाली डिस्क के लिए लैंटर्न संबंध बताया है, यह संबंध किसी भी सतह के मैपिंग क्लास समूह में दिखाई देता है जिसमें ऐसी डिस्क को गैर-सामान्य विधि से एम्बेडिंग किया जा सकता है। इस प्रकार सेटिंग के आधार पर, लैंटर्न संबंध में दिखाई देने वाले कुछ डेन ट्विस्ट पहचान फलन के समरूप हो सकते हैं, जिस स्थिति में संबंध में सात से कम डेन ट्विस्ट सम्मिलित होते हैं।
सतहों के वर्ग समूहों के मानचित्रण के लिए कई अलग-अलग प्रस्तुतियों में लैंटर्न संबंध का उपयोग किया जाता है।
संदर्भ
- ↑ 1.0 1.1 Johnson, Dennis L. (1979). "किसी सतह की समरूपताएँ जो समरूपता पर तुच्छ रूप से कार्य करती हैं" (PDF). Proceedings of the American Mathematical Society. American Mathematical Society. 75 (1): 119–125. doi:10.2307/2042686. JSTOR 2042686.
- ↑ Stipsicz, András; Özbağci, Burak (2004). Surgery on contact 3-manifolds and Stein surfaces. Berlin: Springer. ISBN 3-540-22944-2.