प्राकृतिक संख्या ऑब्जेक्ट: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (9 revisions imported from alpha:प्राकृतिक_संख्या_वस्तु) |
(No difference)
|
Revision as of 10:52, 27 July 2023
श्रेणी सिद्धांत में, एक प्राकृतिक संख्या ऑब्जेक्ट (एनएनओ) प्राकृतिक संख्याओं के समान रिकर्सन (कंप्यूटर विज्ञान) गणितीय संरचना से एक संपन्न ऑब्जेक्ट है। टर्मिनल ऑब्जेक्ट 1 के साथ श्रेणी (गणित) E में अधिक शुद्ध रूप से, एक NNO N इस प्रकार दिया जाता है::
- एक व्यापक तत्व z : 1 → N, और
- एक तीर s : N → N,
ऐसा कि E के किसी भी ऑब्जेक्ट A के लिए, व्यापक तत्व q: 1 → A और तीर f: A → A, एक अद्वितीय तीर u: N → A उपस्थित है जैसे:
अन्य शब्दों में, निम्नलिखित चित्र में त्रिभुज और वर्ग परिवर्तित होते हैं।
युग्म (q, f) को कभी-कभी पुनरावर्ती परिभाषा के रूप में दिए गए यू के लिए पुनरावर्ती (रिकर्शन) डेटा कहा जाता है:
- ⊢ u (z) = q
- y ∈E N ⊢ u (s y) = f (u (y))
उपरोक्त परिभाषा NNO की सार्वभौमिक गुण है जिसका अर्थ है कि उन्हें कैनानिकल समाकारिकता तक परिभाषित किया गया है। यदि उपरोक्त परिभाषित तीर u का केवल अस्तित्व होना है अर्थात विशिष्टता की आवश्यकता नहीं है, तो N को अशक्त NNO कहा जाता है।
समतुल्य परिभाषाएँ
कार्टेशियन संवृत श्रेणियों (सीसीसी) या टोपोई में एनएनओ को कभी-कभी निम्नलिखित तुल्य प्रकार से परिभाषित किया जाता है (लॉवर के कारण): तीरों की प्रत्येक युग्म g : A → B और f : B → B के लिए एक अद्वितीय h : N × A → B है इस प्रकार कि निम्नलिखित आरेख में वर्ग परिवर्तन करते हैं।[4]
यही निर्माण कार्टेशियन श्रेणियों में अशक्त NNO को परिभाषित करता है जो कार्टेशियन संवृत नहीं हैं।
टर्मिनल ऑब्जेक्ट 1 और बाइनरी कॉप्रोडक्ट्स (+ द्वारा चिह्नित) वाली श्रेणी में एक NNO को एंडोफन्क्टर के प्रारंभिक बीजगणित के रूप में परिभाषित किया जा सकता है जो ऑब्जेक्ट्स पर X ↦ 1 + X और तीरों पर f ↦ id1 + f द्वारा कार्य करता है।[5]
गुण
- प्रत्येक NNO फॉर्म के आरेख (श्रेणी सिद्धांत) की श्रेणी की प्रारंभिक ऑब्जेक्ट है
- यदि कार्टेशियन संवृत श्रेणी में अशक्त एनएनओ है तो इसके प्रत्येक भाग में भी अशक्त एनएनओ है।
- एनएनओ का उपयोग विश्लेषण के अमानक मॉडल के समान प्रकार के सिद्धांत के अमानक मॉडल के लिए किया जा सकता है। ऐसी श्रेणियों (या टोपोई) में "अपरिमित रूप से अनेक" अमानक प्राकृतिक संख्याएँ होती हैं।[clarification needed](सदैव की तरह अमानक एनएनओ प्राप्त करने के सरल तरीके हैं; उदाहरण के लिए यदि z = s z है तो उस स्थिति में श्रेणी या टोपोस E नगण्य है।)
- पीटर फ्रायड ने प्रदर्शित किया कि z और s, NNO के लिए एक कॉप्रोडक्ट् आरेख का निर्माण करते हैं; इसके अतिरिक्त, !N : N → 1, s और 1N का एक सहतुल्यकारक है, अर्थात, N के व्यापक तत्वों के प्रत्येक युग्म s के माध्यम से जुड़ा हुए है; इसके अतिरिक्त तथ्यों के यह युग्म सभी NNO की विशेषता का वर्णन करती है।
उदाहरण
- समुच्चय में, समुच्चय की श्रेणी, में मानक प्राकृतिक संख्याएँ एक NNO हैं।[6] समुच्चय में एक टर्मिनल ऑब्जेक्ट एकल(गणित) है तथा एकल में से एक फलन समुच्चय के एक तत्व (सेट सिद्धांत) का चयन करता है। प्राकृतिक संख्याएँ 𝐍 एक NNO हैं जहाँ z एक एकल से 𝐍 तक एक फलन है जिसकी धारणा(गणित) शून्य है और s परवर्ती फलन है। (वस्तुतः हम z को 𝐍 के किसी भी तत्व को चयनित करने की अनुमति दे सकते हैं तथा परिणामी NNO इसके लिए समरूपी होगा।) कोई यह सिद्ध कर सकता है कि परिभाषा में आरेख गणितीय प्रेरण का उपयोग करके परिवर्तित होता है।
- मार्टिन-लोफ प्रकार सिद्धांत के प्रकारों की श्रेणी में (ऑब्जेक्ट्स के रूप में प्ररूप और तीर के रूप में फलन) मानक प्राकृतिक संख्या प्ररूप नेट एक NNO है। यह प्रदर्शित करने के लिए कि उपयुक्त आरेख परिवर्तित होता है, नेट के लिए रिकर्सर का उपयोग किया जा सकता है।
- मान लें कि टर्मिनल ऑब्जेक्ट के साथ एक ग्रोथेंडिक टोपोस है और श्रेणी पर कुछ ग्रोथेंडिक सांस्थिति के लिए है। पुनः यदि , पर अचर प्रीशीफ है तो में NNO, का शीफिफिकेशन है तथा इसे फॉर्म लेने के लिए प्रदर्शित किया जा सकता है
यह भी देखें
- पीनो के अंकगणित के सिद्धांत
- श्रेणीकृत गणितीय तर्क
संदर्भ
- ↑ Johnstone 2002, A2.5.1.
- ↑ Lawvere 2005, p. 14.
- ↑ Leinster, Tom (2014). "सेट सिद्धांत पर पुनर्विचार". American Mathematical Monthly. 121 (5): 403–415. arXiv:1212.6543. Bibcode:2012arXiv1212.6543L. doi:10.4169/amer.math.monthly.121.05.403. S2CID 5732995.
- ↑ Johnstone 2002, A2.5.2.
- ↑ Barr, Michael; Wells, Charles (1990). कंप्यूटिंग विज्ञान के लिए श्रेणी सिद्धांत. New York: Prentice Hall. p. 358. ISBN 0131204866. OCLC 19126000.
- ↑ Johnstone 2005, p. 108.
- Johnstone, Peter T. (2002). Sketches of an Elephant: a Topos Theory Compendium. Oxford: Oxford University Press. ISBN 0198534256. OCLC 50164783.
- Lawvere, William (2005) [1964]. "An elementary theory of the category of sets (long version) with commentary". Reprints in Theory and Applications of Categories. 11: 1–35.
बाहरी संबंध
- Lecture notes from Robert Harper which discuss NNOs in Section 2.2: https://www.cs.cmu.edu/~rwh/courses/hott/notes/notes_week3.pdf
- A blog post by Clive Newstead on the n-Category Cafe: https://golem.ph.utexas.edu/category/2014/01/an_elementary_theory_of_the_ca.html
- Notes on datatypes as algebras for endofunctors by computer scientist Philip Wadler: http://homepages.inf.ed.ac.uk/wadler/papers/free-rectypes/free-rectypes.txt
- Notes on the nLab: https://ncatlab.org/nlab/show/ETCS