लूप बीजगणित: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
{{Short description|Type of Lie algebra of interest in physics}} | {{Short description|Type of Lie algebra of interest in physics}} | ||
{{distinguish|text=[[अर्द्धसमूह]] एक [[तत्समक | {{distinguish|text=[[अर्द्धसमूह]] एक [[तत्समक अवयव ]] के साथ, जिसे बीजगणितीय लूप भी कहा जाता है}} | ||
गणित में, लूप बीजगणित | गणित में, लूप बीजगणित में विशेष प्रकार के लाई बीजगणित हैं, जो [[सैद्धांतिक भौतिकी]] में विशेष रुचि रखते हैं। | ||
==परिभाषा== | ==परिभाषा== | ||
Line 8: | Line 8: | ||
=== ज्यामितीय परिभाषा === | === ज्यामितीय परिभाषा === | ||
यदि <math>\mathfrak{g}</math> एक लाई बीजगणित है, जिसमें | यदि <math>\mathfrak{g}</math> एक लाई बीजगणित है, जिसमें {{math|''C''<sup>∞</sup>(''S''<sup>1</sup>)}} के साथ <math>\mathfrak{g}</math> का प्रदिश गुणनफल, अनेक वृत्त {{math|''S''<sup>1</sup>}} पर (सम्मिश्र) निष्कोण फलनों का बीजगणित है(तुल्यतः, निर्धारित अवधि के निष्कोण सम्मिश्र-मान आवर्ती फलन),<math display=block>\mathfrak{g}\otimes C^\infty(S^1),</math>लाई कोष्ठक द्वारा दिया गया एक अनंत-आयामी लाई बीजगणित है <math display=block>[g_1\otimes f_1,g_2 \otimes f_2]=[g_1,g_2]\otimes f_1 f_2.</math> | ||
Line 14: | Line 14: | ||
यहाँ {{math|''g''<sub>1</sub>}} और {{math|''g''<sub>2</sub>}}, <math>\mathfrak{g}</math> के तत्व हैं तथा {{math|''f''<sub>1</sub>}} और {{math|''f''<sub>2</sub>}}, {{math|''C''<sup>∞</sup>(''S''<sup>1</sup>)}} के तत्व हैं . | यहाँ {{math|''g''<sub>1</sub>}} और {{math|''g''<sub>2</sub>}}, <math>\mathfrak{g}</math> के तत्व हैं तथा {{math|''f''<sub>1</sub>}} और {{math|''f''<sub>2</sub>}}, {{math|''C''<sup>∞</sup>(''S''<sup>1</sup>)}} के तत्व हैं . | ||
यह यथावत् वैसा नहीं है जो | यह यथावत् वैसा नहीं है जो सहजता प्रतिबंध के कारण {{math|''S''<sup>1</sup>}} में प्रत्येक बिंदु के लिए एक <math>\mathfrak{g}</math>, के असीमित अनेक प्रतियों के प्रत्यक्ष फलन के अनुरूप होगा। इसके अतिरिक्त, इसे अन्य शब्दों में <math>\mathfrak{g}</math> में {{math|''S''<sup>1</sup>}} से तक के सुचारू मैप अर्थात् <math>\mathfrak{g}</math>, पैरामिट्रीकृत लूप के संदर्भ में विचारा जा सकता है। इसीलिए इसे लूप बीजगणित कहा जाता है। | ||
== वर्गीकरण == | == वर्गीकरण == |
Revision as of 20:58, 16 July 2023
गणित में, लूप बीजगणित में विशेष प्रकार के लाई बीजगणित हैं, जो सैद्धांतिक भौतिकी में विशेष रुचि रखते हैं।
परिभाषा
एक क्षेत्र पर लाई बीजगणित के लिए यदि लॉरेंट बहुपद का समष्टि है, तो
ज्यामितीय परिभाषा
यदि एक लाई बीजगणित है, जिसमें C∞(S1) के साथ का प्रदिश गुणनफल, अनेक वृत्त S1 पर (सम्मिश्र) निष्कोण फलनों का बीजगणित है(तुल्यतः, निर्धारित अवधि के निष्कोण सम्मिश्र-मान आवर्ती फलन),
यहाँ g1 और g2, के तत्व हैं तथा f1 और f2, C∞(S1) के तत्व हैं .
यह यथावत् वैसा नहीं है जो सहजता प्रतिबंध के कारण S1 में प्रत्येक बिंदु के लिए एक , के असीमित अनेक प्रतियों के प्रत्यक्ष फलन के अनुरूप होगा। इसके अतिरिक्त, इसे अन्य शब्दों में में S1 से तक के सुचारू मैप अर्थात् , पैरामिट्रीकृत लूप के संदर्भ में विचारा जा सकता है। इसीलिए इसे लूप बीजगणित कहा जाता है।
वर्गीकरण
को रैखिक उपसमष्टि के रूप में परिभाषित करते हुए कोष्ठक किसी उत्पाद
तक प्रतिबंधित है, अतः लूप बीजगणित को -वर्गीकृत लाई बीजगणित संरचना दिया गया है।
विशेषतः, कोष्ठक 'शून्य-मोड' उपबीजगणित तक प्रतिबंधित है।
व्युत्पत्ति
लूप बीजगणित पर एक प्राकृतिक व्युत्पत्ति है, जिसे पारंपरिक रूप से निरूपित किया गया है जो निम्न प्रकार कार्य करता है
एफ़िन लाई बीजगणित को परिभाषित करना आवश्यक है, जिसका उपयोग भौतिकी, विशेष रूप से अनुरूप क्षेत्र सिद्धांत में किया जाता है।
लूप समूह
इसी प्रकार S1 से लेकर लाई समूह G तक के सभी सुचारू मैप के समुच्चय एक अनंत-विमितीय लाई समूह बनाता है (इस अर्थ में, ली समूह को फलनात्मक व्युत्पन्न से परिभाषित कर सकते हैं) जिसे लूप समूह कहा जाता है। लूप समूह का लाई बीजगणित समरूपी लूप बीजगणित है।
लूप बीजगणित के केंद्रीय विस्तार के रूप में एफ़िन ली बीजगणित
यदि एक अर्धसरल लाई बीजगणित है, तो इसके लूप बीजगणित का असतहीय केंद्रीय विस्तार एफ़िन लाई बीजगणित को उत्पन्न करता है। इसके अतिरिक्त यह केंद्रीय विस्तार अद्वितीय है।[1]केंद्रीय विस्तार एक केंद्रीय तत्व , को सलंग्न करके दिया जाता है अर्थात सभी के लिए
केंद्रीय विस्तार एक सदिश समष्टि के रूप में (इसकी सामान्य परिभाषा में, जैसा कि सामान्यतः होता है, को एक यादृच्छिक क्षेत्र के रूप में लिया जा सकता है)।
सहचक्र
लाई बीजगणित सहसमरूपता की भाषा का उपयोग करते हुए, केंद्रीय विस्तार को लूप बीजगणित पर 2- सहचक्र का उपयोग करके वर्णित किया जा सकता है। यह मैप है
एफ़िन लाई बीजगणित
भौतिकी में, केंद्रीय विस्तार कभी-कभी एफ़िन लाई बीजगणित के रूप में जाना जाता है। गणित में यह अपर्याप्त है तथा पूर्ण एफ़िन लाई बीजगणित सदिश समष्टि है[2]
जहाँ ऊपर परिभाषित व्युत्पत्ति है।
इस समष्टि पर, किलिंग फॉर्म को प्रव्यपजनन फॉर्म तक विस्तारित किया जा सकता है, और इस प्रकार एफ़िन ली बीजगणित के मूल तंत्र विश्लेषण की अनुमति प्राप्त होती है।
संदर्भ
- ↑ Kac 1990 Exercise 7.8.
- ↑ P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal Field Theory, 1997, ISBN 0-387-94785-X
- Fuchs, Jurgen (1992), Affine Lie Algebras and Quantum Groups, Cambridge University Press, ISBN 0-521-48412-X